Barragan Angela M, Ghaby Kyle, Pond Matthew P, Roux Benoît
Department of Biochemistry and Molecular Biology, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States.
Department of Chemistry, The University of Chicago, 5735 S Ellis Avenue, Chicago, Illinois 60637, United States.
J Chem Inf Model. 2024 Apr 22;64(8):3488-3502. doi: 10.1021/acs.jcim.4c00023. Epub 2024 Mar 28.
Covalent inhibitors represent a promising class of therapeutic compounds. Nonetheless, rationally designing covalent inhibitors to achieve a right balance between selectivity and reactivity remains extremely challenging. To better understand the covalent binding mechanism, a computational study is carried out using the irreversible covalent inhibitor of Bruton tyrosine kinase (BTK) ibrutinib as an example. A multi-μs classical molecular dynamics trajectory of the unlinked inhibitor is generated to explore the fluctuations of the compound associated with the kinase binding pocket. Then, the reaction pathway leading to the formation of the covalent bond with the cysteine residue at position 481 via a Michael addition is determined using the string method in collective variables on the basis of hybrid quantum mechanical-molecular mechanical (QM/MM) simulations. The reaction pathway shows a strong correlation between the covalent bond formation and the protonation/deprotonation events taking place sequentially in the covalent inhibition reaction, consistent with a 3-step reaction with transient thiolate and enolates intermediate states. Two possible atomistic mechanisms affecting deprotonation/protonation events from the thiolate to the enolate intermediate were observed: a highly correlated direct pathway involving proton transfer to the C of the acrylamide warhead from the cysteine involving one or a few water molecules and a more indirect pathway involving a long-lived enolate intermediate state following the escape of the proton to the bulk solution. The results are compared with experiments by simulating the long-time kinetics of the reaction using kinetic modeling.
共价抑制剂是一类很有前景的治疗性化合物。然而,合理设计共价抑制剂以在选择性和反应活性之间实现恰当平衡仍然极具挑战性。为了更好地理解共价结合机制,以布鲁顿酪氨酸激酶(BTK)的不可逆共价抑制剂依鲁替尼为例进行了一项计算研究。生成了未连接抑制剂的多微秒经典分子动力学轨迹,以探索该化合物与激酶结合口袋相关的波动情况。然后,基于混合量子力学 - 分子力学(QM/MM)模拟,使用集体变量中的弦方法确定了通过迈克尔加成与481位半胱氨酸残基形成共价键的反应途径。该反应途径表明共价键形成与共价抑制反应中依次发生的质子化/去质子化事件之间存在很强的相关性,这与具有瞬态硫醇盐和烯醇盐中间态的三步反应一致。观察到了两种可能影响从硫醇盐到烯醇盐中间体去质子化/质子化事件的原子机制:一种是高度相关的直接途径,涉及质子从半胱氨酸通过一个或几个水分子转移到丙烯酰胺弹头的C原子上;另一种是更间接的途径,涉及质子逃逸到本体溶液后形成的长寿命烯醇盐中间态。通过使用动力学模型模拟反应的长时间动力学,将结果与实验进行了比较。
J Chem Inf Model. 2024-4-22
Cancer Chemother Pharmacol. 2025-2-28
Br J Pharmacol. 2019-12-9
J Phys Chem Lett. 2025-8-21
J Med Chem. 2025-3-27
J Phys Chem B. 2023-3-30
ACS Med Chem Lett. 2023-2-14
J Phys Chem Lett. 2022-10-13
Nat Rev Drug Discov. 2022-12
Bioorg Med Chem Lett. 2022-3-15
J Chem Inf Model. 2021-10-25
J Chem Theory Comput. 2020-12-8