Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don, 344090, Russia.
Department of General and Clinical Biochemistry No.2, Rostov State Medical University, 29 Nakhichevansky Lane, Rostov-on-Don, 344022, Russia.
Neuromolecular Med. 2024 Mar 28;26(1):8. doi: 10.1007/s12017-024-08777-2.
This study focuses on understanding the role of c-Myc, a cancer-associated transcription factor, in the penumbra following ischemic stroke. While its involvement in cell death and survival is recognized, its post-translational modifications, particularly acetylation, remain understudied in ischemia models. Investigating these modifications could have significant clinical implications for controlling c-Myc activity in the central nervous system. Although previous studies on c-Myc acetylation have been limited to non-neuronal cells, our research examines its expression in perifocal cells during stroke recovery to explore regulatory mechanisms via acetylation. We found that in peri-infarct neurons, c-Myc is upregulated with acetylation at K148 but not K323 during the acute phase of stroke, with SIRT2 deacetylase primarily affecting K148 acetylation. Molecular dynamics simulations suggest that lysine 148 plays a crucial role in stabilizing c-Myc spatial structure. Increased acetylation at K148 reduces c-Myc compaction, potentially limiting its nuclear penetration, promoting calpain-mediated cleavage, and decreasing nuclear localization. Additionally, cytoplasmic acetylation at K148 may alter c-Myc's interaction with unidentified proteins, potentially influencing its pro-apoptotic effects and promoting cytoplasmic accumulation. Targeting SIRT2 with selective inhibitors could be a promising avenue for future stroke therapy strategies.
本研究旨在探讨癌基因相关转录因子 c-Myc 在缺血性中风后半影区的作用。尽管 c-Myc 参与细胞死亡和存活已有研究,但在缺血模型中,其翻译后修饰,特别是乙酰化作用仍研究不足。研究这些修饰作用对于控制中枢神经系统中 c-Myc 的活性具有重要的临床意义。虽然之前关于 c-Myc 乙酰化的研究仅限于非神经元细胞,但我们的研究在中风恢复过程中检查了其在周边细胞中的表达,以通过乙酰化来探索调节机制。我们发现,在梗塞周边的神经元中,c-Myc 在中风急性期被上调并发生 K148 乙酰化,但 K323 乙酰化没有发生,SIRT2 去乙酰化酶主要影响 K148 乙酰化。分子动力学模拟表明,赖氨酸 148 在稳定 c-Myc 空间结构中起着关键作用。K148 乙酰化增加会降低 c-Myc 的凝聚,可能限制其核穿透,促进钙蛋白酶介导的切割,并减少核定位。此外,K148 上的细胞质乙酰化可能改变 c-Myc 与未鉴定蛋白的相互作用,可能影响其促凋亡作用,并促进细胞质积累。用选择性抑制剂靶向 SIRT2 可能是未来中风治疗策略的一个有前途的途径。