Suppr超能文献

端粒酶逆转录酶和 p53 调节哺乳动物周围神经系统和中枢神经系统轴突再生的下游 c-Myc。

Telomerase Reverse Transcriptase and p53 Regulate Mammalian Peripheral Nervous System and CNS Axon Regeneration Downstream of c-Myc.

机构信息

Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu 215007, China.

Department of Orthopaedic Surgery, the First Affiliated Hospital, Soochow University, Suzhou 215007, China.

出版信息

J Neurosci. 2019 Nov 13;39(46):9107-9118. doi: 10.1523/JNEUROSCI.0419-19.2019. Epub 2019 Oct 9.

Abstract

Although several genes have been identified to promote axon regeneration in the CNS, our understanding of the molecular mechanisms by which mammalian axon regeneration is regulated is still limited and fragmented. Here by using female mouse sensory axon and optic nerve regeneration as model systems, we reveal an unexpected role of telomerase reverse transcriptase (TERT) in regulation of axon regeneration. We also provide evidence that TERT and p53 act downstream of c-Myc to control sensory axon regeneration. More importantly, overexpression of p53 in sensory neurons and retinal ganglion cells is sufficient to promote sensory axon and optic never regeneration, respectively. The study reveals a novel c-Myc-TERT-p53 signaling pathway, expanding horizons for novel approaches promoting CNS axon regeneration. Despite significant progress during the past decade, our understanding of the molecular mechanisms by which mammalian CNS axon regeneration is regulated is still fragmented. By using sensory axon and optic nerve regeneration as model systems, the study revealed an unexpected role of telomerase reverse transcriptase (TERT) in regulation of axon regeneration. The results also delineated a c-Myc-TERT-p53 pathway in controlling axon growth. Last, our results demonstrated that p53 alone was sufficient to promote sensory axon and optic nerve regeneration Collectively, the study not only revealed a new mechanisms underlying mammalian axon regeneration, but also expanded the pool of potential targets that can be manipulated to enhance CNS axon regeneration.

摘要

尽管已经鉴定出几个基因可促进中枢神经系统中的轴突再生,但我们对调节哺乳动物轴突再生的分子机制的理解仍然有限且零散。在这里,我们使用雌性小鼠感觉轴突和视神经再生作为模型系统,揭示了端粒酶逆转录酶 (TERT) 在调节轴突再生中的意外作用。我们还提供了证据表明,TERT 和 p53 作为 c-Myc 的下游因子来控制感觉轴突再生。更重要的是,在感觉神经元和视网膜神经节细胞中过表达 p53 足以分别促进感觉轴突和视神经再生。该研究揭示了一种新的 c-Myc-TERT-p53 信号通路,为促进中枢神经系统轴突再生的新方法提供了广阔的前景。尽管在过去十年中取得了重大进展,但我们对调节哺乳动物中枢神经系统轴突再生的分子机制的理解仍然零散。通过使用感觉轴突和视神经再生作为模型系统,该研究揭示了端粒酶逆转录酶 (TERT) 在调节轴突再生中的意外作用。研究结果还描绘了控制轴突生长的 c-Myc-TERT-p53 途径。最后,我们的结果表明,p53 本身足以促进感觉轴突和视神经再生。总之,该研究不仅揭示了哺乳动物轴突再生的新机制,还扩大了潜在目标的范围,可以对其进行操纵以增强中枢神经系统轴突再生。

相似文献

1
Telomerase Reverse Transcriptase and p53 Regulate Mammalian Peripheral Nervous System and CNS Axon Regeneration Downstream of c-Myc.
J Neurosci. 2019 Nov 13;39(46):9107-9118. doi: 10.1523/JNEUROSCI.0419-19.2019. Epub 2019 Oct 9.
2
Lin28 Signaling Supports Mammalian PNS and CNS Axon Regeneration.
Cell Rep. 2018 Sep 4;24(10):2540-2552.e6. doi: 10.1016/j.celrep.2018.07.105.
3
The MDM4/MDM2-p53-IGF1 axis controls axonal regeneration, sprouting and functional recovery after CNS injury.
Brain. 2015 Jul;138(Pt 7):1843-62. doi: 10.1093/brain/awv125. Epub 2015 May 16.
4
Telomerase activity and telomerase reverse transcriptase expression induced by selenium in rat hepatocytes.
Biomed Environ Sci. 2009 Aug;22(4):311-7. doi: 10.1016/S0895-3988(09)60061-1.
5
Histone methyltransferase Ezh2 coordinates mammalian axon regeneration via regulation of key regenerative pathways.
J Clin Invest. 2023 Nov 28;134(3). doi: 10.1172/JCI163145. eCollection 2024 Feb 1.
6
Effects of cadmium on telomerase activity, expressions of TERT, c-myc and P53, and apoptosis of rat hepatocytes.
J Huazhong Univ Sci Technolog Med Sci. 2010 Dec;30(6):709-13. doi: 10.1007/s11596-010-0645-8. Epub 2010 Dec 22.
8
KLF9 and JNK3 Interact to Suppress Axon Regeneration in the Adult CNS.
J Neurosci. 2017 Oct 4;37(40):9632-9644. doi: 10.1523/JNEUROSCI.0643-16.2017. Epub 2017 Sep 4.
9
c-Myc-mediated regulation of telomerase activity is disabled in immortalized cells.
J Biol Chem. 2001 Aug 10;276(32):29994-30001. doi: 10.1074/jbc.M101899200. Epub 2001 Jun 11.

引用本文的文献

1
Suppressing DBNDD2 promotes neuron growth and axon regeneration in adult mammals.
Front Med. 2025 Jul 14. doi: 10.1007/s11684-025-1146-2.
2
Sandwich-Layered Structure Nanofiber Conduits Facilitating the Repair of Long-Gap Nerve Defects.
ACS Omega. 2025 Jun 5;10(23):24961-24972. doi: 10.1021/acsomega.5c02439. eCollection 2025 Jun 17.
3
Brain Plasticity and Cell Competition: Immediate Early Genes Are the Focus.
Cells. 2025 Jan 19;14(2):143. doi: 10.3390/cells14020143.
4
Cycloastragenol promotes dorsal column axon regeneration in mice.
Front Cell Neurosci. 2025 Jan 3;18:1424137. doi: 10.3389/fncel.2024.1424137. eCollection 2024.
5
c-Myc and FOXO3a-The Everlasting Decision Between Neural Regeneration and Degeneration.
Int J Mol Sci. 2024 Nov 24;25(23):12621. doi: 10.3390/ijms252312621.
6
Manipulating Myc for reparative regeneration.
Front Cell Dev Biol. 2024 Mar 21;12:1357589. doi: 10.3389/fcell.2024.1357589. eCollection 2024.
7
Acetylation of c-Myc at Lysine 148 Protects Neurons After Ischemia.
Neuromolecular Med. 2024 Mar 28;26(1):8. doi: 10.1007/s12017-024-08777-2.
9
Myc beyond Cancer: Regulation of Mammalian Tissue Regeneration.
Pathophysiology. 2023 Aug 2;30(3):346-365. doi: 10.3390/pathophysiology30030027.
10
New Insights into the Roles of p53 in Central Nervous System Diseases.
Int J Neuropsychopharmacol. 2023 Jul 31;26(7):465-473. doi: 10.1093/ijnp/pyad030.

本文引用的文献

1
Wild-Type p53 Promotes Cancer Metabolic Switch by Inducing PUMA-Dependent Suppression of Oxidative Phosphorylation.
Cancer Cell. 2019 Feb 11;35(2):191-203.e8. doi: 10.1016/j.ccell.2018.12.012. Epub 2019 Jan 31.
2
Lin28 Signaling Supports Mammalian PNS and CNS Axon Regeneration.
Cell Rep. 2018 Sep 4;24(10):2540-2552.e6. doi: 10.1016/j.celrep.2018.07.105.
3
The Emerging Roles for Telomerase in the Central Nervous System.
Front Mol Neurosci. 2018 May 16;11:160. doi: 10.3389/fnmol.2018.00160. eCollection 2018.
4
Down regulation of human telomerase reverse transcriptase (hTERT) expression by BIBR1532 in human glioblastoma LN18 cells.
Cytotechnology. 2018 Aug;70(4):1143-1154. doi: 10.1007/s10616-018-0205-9. Epub 2018 Mar 15.
6
Telomerase and mTOR in the brain: the mitochondria connection.
Neural Regen Res. 2017 Mar;12(3):358-361. doi: 10.4103/1673-5374.202922.
7
Transcriptional Regulation of Telomerase Reverse Transcriptase (TERT) by MYC.
Front Cell Dev Biol. 2017 Jan 26;5:1. doi: 10.3389/fcell.2017.00001. eCollection 2017.
8
Telomeres in cancer: tumour suppression and genome instability.
Nat Rev Mol Cell Biol. 2017 Mar;18(3):175-186. doi: 10.1038/nrm.2016.171. Epub 2017 Jan 18.
10
A Systems-Level Analysis of the Peripheral Nerve Intrinsic Axonal Growth Program.
Neuron. 2016 Mar 2;89(5):956-70. doi: 10.1016/j.neuron.2016.01.034. Epub 2016 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验