Suppr超能文献

药物诱导睡眠内镜检查中睡眠时多导呼吸气流形态和塌陷部位。

Polysomnographic airflow shapes and site of collapse during drug-induced sleep endoscopy.

机构信息

Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium

Department of ENT, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium.

出版信息

Eur Respir J. 2024 Jun 6;63(6). doi: 10.1183/13993003.00261-2024. Print 2024 Jun.

Abstract

BACKGROUND

Differences in the pharyngeal site of collapse influence efficacy of non-continuous positive airway pressure therapies for obstructive sleep apnoea (OSA). Notably, complete concentric collapse at the level of the palate (CCCp) during drug-induced sleep endoscopy (DISE) is associated with reduced efficacy of hypoglossal nerve stimulation, but CCCp is currently not recognisable using polysomnography. Here we develop a means to estimate DISE-based site of collapse using overnight polysomnography.

METHODS

182 OSA patients provided DISE and polysomnography data. Six polysomnographic flow shape characteristics (mean during hypopnoeas) were identified as candidate predictors of CCCp (primary outcome variable, n=44/182), including inspiratory skewness and inspiratory scoopiness. Multivariable logistic regression combined the six characteristics to predict clear presence (n=22) absence (n=128) of CCCp (partial collapse and concurrent tongue base collapse excluded). Odds ratios for actual CCCp between predicted subgroups were quantified after cross-validation. Secondary analyses examined complete lateral wall, tongue base or epiglottis collapse. External validation was performed on a separate dataset (n=466).

RESULTS

CCCp was characterised by greater scoopiness (β=1.5±0.6 per 2sd, multivariable estimate±se) and skewness (β=11.4±2.4) compared with non-CCCp. The odds ratio for CCCp in predicted positive negative subgroups was 5.0 (95% CI 1.9-13.1). The same characteristics provided significant cross-validated prediction of lateral wall (OR 6.3, 95% CI 2.4-16.5), tongue base (OR 3.2, 95% CI 1.4-7.3) and epiglottis (OR 4.4, 95% CI 1.5-12.4) collapse. CCCp and lateral wall collapse shared similar characteristics (skewed, scoopy), diametrically opposed to tongue base and epiglottis collapse characteristics. External validation confirmed model prediction.

CONCLUSIONS

The current study provides a means to recognise patients with likely CCCp or other DISE-based site of collapse categories using routine polysomnography. Since site of collapse influences therapeutic responses, polysomnographic airflow shape analysis could facilitate precision site-specific OSA interventions.

摘要

背景

咽腔塌陷部位的差异会影响阻塞性睡眠呼吸暂停(OSA)的非持续气道正压治疗效果。值得注意的是,药物诱导睡眠内镜检查(DISE)中硬腭水平完全同心塌陷(CCCp)与舌下神经刺激疗效降低相关,但目前多导睡眠图无法识别 CCCp。本研究旨在利用整夜多导睡眠图来估计 DISE 基础的塌陷部位。

方法

182 例 OSA 患者提供了 DISE 和多导睡眠图数据。确定了 6 种多导睡眠图气流形态特征(呼吸暂停期间的平均值)作为 CCCp 的候选预测因子(主要结局变量,n=44/182),包括吸气偏度和吸气勺状。多变量逻辑回归将这 6 个特征结合起来,预测 CCCp 的明确存在(n=22)或不存在(n=128)(排除部分塌陷和同时存在的舌基底塌陷)。在校正交叉验证后,量化了预测亚组之间实际 CCCp 的优势比。对完全侧壁、舌基底或会厌塌陷进行了二次分析。对另一组独立数据集(n=466)进行了外部验证。

结果

CCCp 的勺状(β=1.5±0.6 per 2sd,多变量估计值±se)和偏度(β=11.4±2.4)均大于非 CCCp。在预测阳性和阴性亚组中,CCCp 的优势比为 5.0(95%CI 1.9-13.1)。相同的特征对侧壁(OR 6.3,95%CI 2.4-16.5)、舌基底(OR 3.2,95%CI 1.4-7.3)和会厌(OR 4.4,95%CI 1.5-12.4)塌陷具有显著的交叉验证预测能力。CCCp 和侧壁塌陷具有相似的特征(偏斜、勺状),与舌基底和会厌塌陷特征截然相反。外部验证证实了模型预测。

结论

本研究提供了一种使用常规多导睡眠图识别可能存在 CCCp 或其他 DISE 基础塌陷部位的患者的方法。由于塌陷部位会影响治疗反应,因此多导睡眠图气流形态分析可以促进针对特定部位的 OSA 干预措施的精确实施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e3d/11154757/805b6cfead9a/ERJ-00261-2024.01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验