Suppr超能文献

用于先进比色电子鼻的时间分辨高光谱数据的多通道层次分析

Multichannel Hierarchical Analysis of Time-Resolved Hyperspectral Data for Advanced Colorimetric E-Nose.

作者信息

Jeong Tae-In, Nguyen Thanh Mien, Choi Eunji, Gliserin Alexander, Nguyen Thu M T, Kim San, Kim Sehyeon, Kim Hyunseo, Bak Gyeong-Ha, Kim Na-Yeong, Devaraj Vasanthan, Choi Eunjung, Oh Jin-Woo, Kim Seungchul

机构信息

Department of Cogno-mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea.

Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea.

出版信息

ACS Sens. 2024 Jun 28;9(6):2869-2876. doi: 10.1021/acssensors.3c02663. Epub 2024 Mar 28.

Abstract

The colorimetric sensor-based electronic nose has been demonstrated to discriminate specific gaseous molecules for various applications, including health or environmental monitoring. However, conventional colorimetric sensor systems rely on RGB sensors, which cannot capture the complete spectral response of the system. This limitation can degrade the performance of machine learning analysis, leading to inaccurate identification of chemicals with similar functional groups. Here, we propose a novel time-resolved hyperspectral (TRH) data set from colorimetric array sensors consisting of 1D spatial, 1D spectral, and 1D temporal axes, which enables hierarchical analysis of multichannel 2D spectrograms via a convolution neural network (CNN). We assessed the outstanding classification performance of the TRH data set compared to an RGB data set by conducting a relative humidity (RH) concentration classification. The time-dependent spectral response of the colorimetric sensor was measured and trained as a CNN model using TRH and RGB sensor systems at different RH levels. While the TRH model shows a high classification accuracy of 97.5% for the RH concentration, the RGB model yields 72.5% under identical conditions. Furthermore, we demonstrated the detection of various functional volatile gases with the TRH system by using experimental and simulation approaches. The results reveal distinct spectral features from the TRH system, corresponding to changes in the concentration of each substance.

摘要

基于比色传感器的电子鼻已被证明可用于区分特定气体分子,以用于包括健康或环境监测在内的各种应用。然而,传统的比色传感器系统依赖于RGB传感器,无法捕获系统的完整光谱响应。这种限制会降低机器学习分析的性能,导致对具有相似官能团的化学物质识别不准确。在此,我们提出了一种来自比色阵列传感器的新型时间分辨高光谱(TRH)数据集,它由一维空间、一维光谱和一维时间轴组成,能够通过卷积神经网络(CNN)对多通道二维光谱图进行分层分析。我们通过进行相对湿度(RH)浓度分类,评估了TRH数据集相对于RGB数据集的出色分类性能。使用TRH和RGB传感器系统在不同RH水平下测量比色传感器的时间相关光谱响应,并将其训练为CNN模型。虽然TRH模型对RH浓度的分类准确率高达97.5%,但在相同条件下RGB模型的准确率为72.5%。此外,我们通过实验和模拟方法展示了TRH系统对各种功能性挥发性气体的检测。结果揭示了TRH系统独特的光谱特征,对应于每种物质浓度的变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验