Suppr超能文献

利用高光谱显微镜成像自动检测组织切片中的头颈部鳞状细胞癌。

Automatic detection of head and neck squamous cell carcinoma on histologic slides using hyperspectral microscopic imaging.

机构信息

University of Texas at Dallas, Department of Bioengineering, Richardson, Texas, United States.

Tianjin University, State Key Laboratory of Precision Measurement Technology and Instruments, Tianji, China.

出版信息

J Biomed Opt. 2022 Apr;27(4). doi: 10.1117/1.JBO.27.4.046501.

Abstract

SIGNIFICANCE

Automatic, fast, and accurate identification of cancer on histologic slides has many applications in oncologic pathology.

AIM

The purpose of this study is to investigate hyperspectral imaging (HSI) for automatic detection of head and neck cancer nuclei in histologic slides, as well as cancer region identification based on nuclei detection.

APPROACH

A customized hyperspectral microscopic imaging system was developed and used to scan histologic slides from 20 patients with squamous cell carcinoma (SCC). Hyperspectral images and red, green, and blue (RGB) images of the histologic slides with the same field of view were obtained and registered. A principal component analysis-based nuclei segmentation method was developed to extract nuclei patches from the hyperspectral images and the coregistered RGB images. Spectra-based support vector machine and patch-based convolutional neural networks (CNNs) were implemented for nuclei classification. The CNNs were trained with RGB patches (RGB-CNN) and hyperspectral patches (HSI-CNN) of the segmented nuclei and the utility of the extra spectral information provided by HSI was evaluated. Furthermore, cancer region identification was implemented by image-wise classification based on the percentage of cancerous nuclei detected in each image.

RESULTS

RGB-CNN, which mainly used the spatial information of nuclei, resulted in a 0.81 validation accuracy and 0.74 testing accuracy. HSI-CNN, which utilized the spatial and spectral features of the nuclei, showed significant improvement in classification performance and achieved 0.89 validation accuracy as well as 0.82 testing accuracy. Furthermore, the image-wise cancer region identification based on nuclei detection could generally improve the cancer detection rate.

CONCLUSIONS

We demonstrated that the morphological and spectral information contribute to SCC nuclei differentiation and that the spectral information within hyperspectral images could improve classification performance.

摘要

意义

在组织学切片上自动、快速且准确地识别癌症具有许多肿瘤病理学应用。

目的

本研究旨在研究用于自动检测组织学切片中头颈部癌细胞核的高光谱成像(HSI),以及基于细胞核检测的癌症区域识别。

方法

开发了一种定制的高光谱显微镜成像系统,并用于扫描来自 20 名鳞状细胞癌(SCC)患者的组织学切片。获得了组织学切片的高光谱图像和具有相同视场的红、绿和蓝(RGB)图像,并对其进行了配准。开发了基于主成分分析的细胞核分割方法,从高光谱图像和配准的 RGB 图像中提取细胞核斑块。实现了基于光谱的支持向量机和基于斑块的卷积神经网络(CNN)来进行细胞核分类。使用分割细胞核的 RGB 斑块(RGB-CNN)和高光谱斑块(HSI-CNN)对 CNN 进行训练,并评估了 HSI 提供的额外光谱信息的实用性。此外,通过在每个图像中检测到的癌变细胞核的百分比进行图像分类实现了癌症区域识别。

结果

主要利用细胞核空间信息的 RGB-CNN 得到了 0.81 的验证准确性和 0.74 的测试准确性。利用细胞核的空间和光谱特征的 HSI-CNN 在分类性能方面有了显著提高,验证准确性达到 0.89,测试准确性达到 0.82。此外,基于细胞核检测的图像分类的癌症区域识别通常可以提高癌症检出率。

结论

我们证明了形态和光谱信息有助于 SCC 细胞核的区分,并且高光谱图像中的光谱信息可以提高分类性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5464/9050479/e0e095e987aa/JBO-027-046501-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验