Choi Eunji, Jeong Tae-In, Nguyen Thanh Mien, Gliserin Alexander, Lee Jimin, Bak Gyeong-Ha, Kim San, Kim Sehyeon, Oh Jin-Woo, Kim Seungchul
Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea.
BK21 FOUR Education and Research Division for Energy Convergence Technology, Pusan National University, Busan 46241, Republic of Korea.
ACS Sens. 2025 Apr 25;10(4):3003-3012. doi: 10.1021/acssensors.5c00015. Epub 2025 Mar 24.
Chemical vapor sensors are essential for various fields, including medical diagnostics and environmental monitoring. Notably, the identification of components in unknown gas mixtures has great potential for noninvasive diagnosis of diseases such as lung cancer. However, current gas identification techniques, despite the development of electronic nose-based sensor platforms, still lack sufficient classification accuracy for mixed gases. In our previous study, we introduced multichannel hierarchical analysis using a time-resolved hyperspectral system to address the spectral ambiguity of conventional RGB sensor-based colorimetric e-noses. Here, we demonstrate the identification of mixed gas components through time-resolved line hyperspectral measurements with an eight-colorimetric sensor array that uses genetically engineered M13 bacteriophages as gas-selective colorimetric sensors. The time-dependent spectral variations induced by mixed gas in the different colorimetric sensors are converted into a hyperspectral three-dimensional (3D) data cube. For efficient machine learning classification, the data cube was converted into a multichannel spectrogram by applying a novel data processing method, including dimensionality reduction and a block average filter to reduce high-dimensional complexity and improve the signal-to-noise ratio. A convolution filter was then used for hierarchical analysis of the multichannel spectrogram, effectively capturing the complex gas-induced spectral patterns and temporal dynamics. Our study demonstrates a classification accuracy of 93.9% for pure and mixed gases of acetone, ethanol, and xylene at a low concentration of 2 ppm.
化学气相传感器在包括医学诊断和环境监测在内的各个领域都至关重要。值得注意的是,识别未知气体混合物中的成分对于肺癌等疾病的无创诊断具有巨大潜力。然而,尽管基于电子鼻的传感器平台有所发展,但目前的气体识别技术对于混合气体仍缺乏足够的分类精度。在我们之前的研究中,我们引入了使用时间分辨高光谱系统的多通道层次分析,以解决传统基于RGB传感器的比色电子鼻的光谱模糊性问题。在此,我们展示了通过使用基因工程M13噬菌体作为气体选择性比色传感器的八比色传感器阵列进行时间分辨线高光谱测量来识别混合气体成分。混合气体在不同比色传感器中引起的随时间变化的光谱变化被转换为高光谱三维(3D)数据立方体。为了进行高效的机器学习分类,通过应用一种新颖的数据处理方法,包括降维和块平均滤波器以降低高维复杂性并提高信噪比,将数据立方体转换为多通道光谱图。然后使用卷积滤波器对多通道光谱图进行层次分析,有效地捕捉复杂的气体诱导光谱模式和时间动态。我们的研究表明,对于浓度为2 ppm的丙酮、乙醇和二甲苯的纯气体和混合气体,分类准确率为93.9%。