Suppr超能文献

通过反义寡核苷酸远程调控脂质生物合成:AuNPs 的基因表达纳米调控。

Nano-Regulation of Gene Expression in : Harnessing AuNPs for Remotely Switchable Lipid Biosynthesis via Antisense Oligonucleotides.

机构信息

Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz 71946-84636, Iran.

Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, UANL, San Nicolás de los Garza, Nuevo León 66455, México.

出版信息

ACS Synth Biol. 2024 Jun 21;13(6):1694-1704. doi: 10.1021/acssynbio.3c00650. Epub 2024 Mar 28.

Abstract

Antisense oligonucleotide (ASO)-mediated gene silencing has broad applications, spanning from biomedicine to agriculture, involving molecular biology, synthetic biology, and genetic manipulation. This research harnessed nanotechnology to augment ASO-mediated gene silencing, introducing a remotely switchable gene expression system for precise temporal control. We targeted lipid biosynthesis and accumulation enhancement in the photosynthetic eukaryote . Gold nanoparticles (AuNPs) transported double-stranded DNA (dsDNA), forming dsDNA-AuNP complexes. These complexes comprised 3'-thiolated sense strands attached to AuNPs and fluorescent antisense oligonucleotides. To avoid harmful laser effects on cells, we adopted a light-emitting diode (LED). Confocal microscopy confirmed dsDNA-AuNP internalization in . . LED-triggered antisense release led to an 83% decrease in (CIS 2) expression. Thiolated sense strand attachment postillumination inhibited antisense reannealing, enhancing gene silencing. This led to significant lipid body accumulation in cells, verified through fluorometric and fluorescence microscopy. This union of nanotechnology and ASO-mediated silencing provides gene regulation opportunities across sectors like biomedicine and agriculture. The system's remote switching capability underscores its potential in synthetic biology and genetic engineering. Our findings substantiate the utility of this approach for enhancing lipid biosynthesis in . but also underscores its broader applicability to other organisms, fostering the development of novel solutions for pressing global challenges in energy, agriculture, and healthcare.

摘要

反义寡核苷酸(ASO)介导的基因沉默具有广泛的应用,从生物医药到农业,涉及分子生物学、合成生物学和遗传操作。本研究利用纳米技术增强 ASO 介导的基因沉默,引入远程可切换的基因表达系统以实现精确的时间控制。我们针对光合作用真核生物中的脂质生物合成和积累增强进行了研究。金纳米颗粒(AuNPs)携带双链 DNA(dsDNA),形成 dsDNA-AuNP 复合物。这些复合物由附着在 AuNPs 上的 3'-硫代化的正义链和荧光反义寡核苷酸组成。为了避免激光对细胞的有害影响,我们采用了发光二极管(LED)。共聚焦显微镜证实了 dsDNA-AuNP 在 中的内化。LED 触发的反义释放导致 (CIS 2)表达降低了 83%。光照后硫代化的正义链附着抑制了反义复性,增强了基因沉默。这导致细胞中脂质体的大量积累,通过荧光计和荧光显微镜得到了验证。这项纳米技术和 ASO 介导的沉默的结合为生物医药和农业等领域的基因调控提供了机会。该系统的远程切换能力突显了其在合成生物学和遗传工程中的潜力。我们的研究结果证实了该方法在增强 中的脂质生物合成方面的实用性,但也突显了其在其他生物体中的更广泛适用性,为解决能源、农业和医疗保健领域的全球紧迫挑战提供了新的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验