Universidad Autónoma de Nuevo León, UANL. Facultad de Ciencias Químicas, Av. Universidad S/N. CD. Universitaria, San Nicolás de los Garza, 66455, Nuevo León, México.
Centro de Investigación en Biotecnología Y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Km. 10 Autopista Al Aeropuerto Internacional Mariano Escobedo, 66629, Apodaca, Nuevo León, México.
Microb Cell Fact. 2023 Mar 31;22(1):61. doi: 10.1186/s12934-023-02063-9.
Research development in the precise control of gene expression in plant cells is an emerging necessity that would lead to the elucidation of gene function in these biological systems. Conventional gene-interfering techniques, such as micro-RNA and short interfering RNA, have limitations in their ability to downregulate gene expression in plants within short time periods. However, nanotechnology provides a promising new avenue with new tools to overcome these challenges. Here, we show that functionalized gold nanoparticles, decorated with sense and antisense oligonucleotides (FANSAO), can serve as a remote-control optical switch for gene interference in photosynthetic plant cells. We demonstrate the potential of employing LEDs as optimal light sources to photothermally dehybridize the oligonucleotides on the surface of metallic nanostructures, consequently inducing regulation of gene expression in plant cells. We show the efficiency of metallic nanoparticles in absorbing light from an LED source and converting it to thermal energy, resulting in a local temperature increase on the surface of the gold nanoparticles. The antisense oligonucleotides are then released due to the opto-thermal heating of the nanobiosystem composed of the metallic nanoparticles and the sense-antisense oligonucleotides. By applying this approach, we silenced the Carnitine Acyl Carnitine Translocase genes at 90.7%, resulting in the accumulation of lipid bodies in microalgae cells. These results exhibit the feasibility of using functionalized gold nanoparticles with sense and antisense oligonucleotides to enhance nucleic acid delivery efficiency and, most importantly, allow for temporal control of gene silencing in plant cells. These nanobiosystems have broad applications in the development and biosynthesis of biofuels, pharmaceuticals, and specialized chemicals.
在植物细胞中精确控制基因表达的研究进展是一种新兴的必要性,这将导致这些生物系统中基因功能的阐明。传统的基因干扰技术,如 micro-RNA 和短发夹 RNA,在短时间内下调植物中基因表达的能力有限。然而,纳米技术提供了一个有前途的新途径,有新的工具来克服这些挑战。在这里,我们展示了功能化的金纳米粒子,用有义链和反义寡核苷酸(FANSAO)修饰,可以作为光合作用植物细胞中基因干扰的远程控制光开关。我们证明了使用 LED 作为最佳光源来光热解杂交在金属纳米结构表面的寡核苷酸的潜力,从而诱导植物细胞中基因表达的调节。我们展示了金属纳米粒子从 LED 光源吸收光并将其转化为热能的效率,从而导致金纳米粒子表面的局部温度升高。然后,由于由金属纳米粒子和有义-反义寡核苷酸组成的纳米生物系统的光热加热,反义寡核苷酸被释放。通过应用这种方法,我们使 Carnitine Acyl Carnitine Translocase 基因沉默了 90.7%,导致微藻细胞中脂质体的积累。这些结果表明,使用功能化的金纳米粒子与有义和反义寡核苷酸来增强核酸传递效率是可行的,最重要的是,允许在植物细胞中对基因沉默进行时间控制。这些纳米生物系统在生物燃料、药物和特种化学品的开发和生物合成中有广泛的应用。