Suppr超能文献

预测终末期肾病患者在功能子网尺度上的认知功能状态。

Predicting the cognitive function status in end-stage renal disease patients at a functional subnetwork scale.

机构信息

School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China.

Department of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China.

出版信息

Math Biosci Eng. 2024 Feb 20;21(3):3838-3859. doi: 10.3934/mbe.2024171.

Abstract

Brain functional networks derived from functional magnetic resonance imaging (fMRI) provide a promising approach to understanding cognitive processes and predicting cognitive abilities. The topological attribute parameters of global networks are taken as the features from the overall perspective. It is constrained to comprehend the subtleties and variances of brain functional networks, which fell short of thoroughly examining the complex relationships and information transfer mechanisms among various regions. To address this issue, we proposed a framework to predict the cognitive function status in the patients with end-stage renal disease (ESRD) at a functional subnetwork scale (CFSFSS). The nodes from different network indicators were combined to form the functional subnetworks. The area under the curve (AUC) of the topological attribute parameters of functional subnetworks were extracted as features, which were selected by the minimal Redundancy Maximum Relevance (mRMR). The parameter combination with improved fitness was searched by the enhanced whale optimization algorithm (E-WOA), so as to optimize the parameters of support vector regression (SVR) and solve the global optimization problem of the predictive model. Experimental results indicated that CFSFSS achieved superior predictive performance compared to other methods, by which the mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE) were up to 0.5951, 0.0281 and 0.9994, respectively. The functional subnetwork effectively identified the active brain regions associated with the cognitive function status, which offered more precise features. It not only helps to more accurately predict the cognitive function status, but also provides more references for clinical decision-making and intervention of cognitive impairment in ESRD patients.

摘要

基于功能磁共振成像 (fMRI) 的脑功能网络提供了一种很有前途的理解认知过程和预测认知能力的方法。全局网络的拓扑属性参数从整体角度被视为特征。它受到限制,无法理解脑功能网络的细微差别和差异,因此无法彻底检查各个区域之间的复杂关系和信息传递机制。为了解决这个问题,我们提出了一种在功能子网规模 (CFSFSS) 上预测终末期肾病 (ESRD) 患者认知功能状态的框架。从不同网络指标中选择节点形成功能子网。提取功能子网拓扑属性参数的曲线下面积 (AUC) 作为特征,并通过最小冗余最大相关性 (mRMR) 进行选择。通过增强型鲸鱼优化算法 (E-WOA) 搜索改进适应性的参数组合,以优化支持向量回归 (SVR) 的参数并解决预测模型的全局优化问题。实验结果表明,CFSFSS 相较于其他方法具有更好的预测性能,其平均绝对误差 (MAE)、平均绝对百分比误差 (MAPE) 和均方根误差 (RMSE) 分别达到 0.5951、0.0281 和 0.9994。功能子网有效地识别了与认知功能状态相关的活跃脑区,提供了更精确的特征。这不仅有助于更准确地预测认知功能状态,还为 ESRD 患者认知障碍的临床决策和干预提供了更多参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验