Suppr超能文献

基于多尺度熵分析的 OCT 回波在牙体脱矿诊断中的应用研究。

Proposal of dental demineralization diagnosis with OCT echo based on multiscale entropy analysis.

机构信息

College of Mathematics and Physics, Hunan University of Arts and Science, Changde 415000, China.

Hunan Province Key Laboratory of Photoelectric Information Integration and Optical Manufacturing Technology, Changde 415000, China.

出版信息

Math Biosci Eng. 2024 Feb 27;21(3):4421-4439. doi: 10.3934/mbe.2024195.

Abstract

Optical coherence tomography (OCT) has been widely used for the diagnosis of dental demineralization. Most methods rely on extracting optical features from OCT echoes for evaluation or diagnosis. However, due to the diversity of biological samples and the complexity of tissues, the separability and robustness of extracted optical features are inadequate, resulting in a low diagnostic efficiency. Given the widespread utilization of entropy analysis in examining signals from biological tissues, we introduce a dental demineralization diagnosis method using OCT echoes, employing multiscale entropy analysis. Three multiscale entropy analysis methods were used to extract features from the OCT one-dimensional echo signal of normal and demineralized teeth, and a probabilistic neural network (PNN) was used for dental demineralization diagnosis. By comparing diagnostic efficiency, diagnostic speed, and parameter optimization dependency, the multiscale dispersion entropy-PNN (MDE-PNN) method was found to have comprehensive advantages in dental demineralization diagnosis with a diagnostic efficiency of 0.9397. Compared with optical feature-based dental demineralization diagnosis methods, the entropy features-based analysis had better feature separability and higher diagnostic efficiency, and showed its potential in dental demineralization diagnosis with OCT.

摘要

光学相干断层扫描(OCT)已广泛应用于牙体脱矿的诊断。大多数方法依赖于从 OCT 回波中提取光学特征进行评估或诊断。然而,由于生物样本的多样性和组织的复杂性,提取的光学特征的可分离性和鲁棒性不足,导致诊断效率低下。鉴于熵分析在检查生物组织信号方面的广泛应用,我们引入了一种基于 OCT 回波的牙体脱矿诊断方法,采用多尺度熵分析。使用三种多尺度熵分析方法从正常和脱矿牙齿的 OCT 一维回波信号中提取特征,并使用概率神经网络(PNN)进行牙体脱矿诊断。通过比较诊断效率、诊断速度和参数优化依赖性,发现多尺度散布熵-PNN(MDE-PNN)方法在牙体脱矿诊断中具有全面优势,诊断效率为 0.9397。与基于光学特征的牙体脱矿诊断方法相比,基于熵特征的分析具有更好的特征可分离性和更高的诊断效率,在基于 OCT 的牙体脱矿诊断中显示出其潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验