Feng Yuanyuan, Wang Wenkai, Jiang Shasha, Liu Yongming, Wang Yan, Zhan Xiangyang, Zhu Huirong, Du Guoqing
Department of Oncology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
Front Pharmacol. 2024 Mar 13;15:1343819. doi: 10.3389/fphar.2024.1343819. eCollection 2024.
Kidney renal clear cell carcinoma (KIRC) is a common and clinically significant subtype of kidney cancer. A potential therapeutic target in KIRC is disulfidptosis, a novel mode of cell death induced by disulfide stress. The aim of this study was to develop a prognostic model to explore the clinical significance of different disulfidptosis gene typings from KIRC. A comprehensive analysis of the chromosomal localization, expression patterns, mutational landscape, copy number variations, and prognostic significance of 10 disulfide death genes was conducted. Patients were categorized into distinct subtypes using the Non-negative Matrix Factorization (NMF) typing method based on disulfidptosis gene expression patterns. Weighted Gene Co-expression Network Analysis (WGCNA) was used on the KIRC dataset to identify differentially expressed genes between subtype clusters. A risk signature was created using LASSO-Cox regression and validated by survival analysis. An interaction between risk score and immune cell infiltration, tumor microenvironment characteristics and pathway enrichment analysis were investigated. Initial findings highlight the differential expression of specific DRGs in KIRC, with genomic instability and somatic mutation analysis revealing key insights into their role in cancer progression. NMF clustering differentiates KIRC patients into subgroups with distinct survival outcomes and immune profiles, and hierarchical clustering identifies gene modules associated with key biological and clinical parameters, leading to the development of a risk stratification model (LRP8, RNASE2, CLIP4, HAS2, SLC22A11, and KCTD12) validated by survival analysis and predictive of immune infiltration and drug sensitivity. Pathway enrichment analysis further delineates the differential molecular pathways between high-risk and low-risk patients, offering potential targets for personalized treatment. Lastly, differential expression analysis of model genes between normal and KIRC cells provides insights into the molecular mechanisms underlying KIRC, highlighting potential biomarkers and therapeutic targets. This study contributes to the understanding of KIRC and provides a potential prognostic model using disulfidptosis gene for personalized management in KIRC patients. The risk signature shows clinical applicability and sheds light on the biological mechanisms associated with disulfide-induced cell death.
肾透明细胞癌(KIRC)是一种常见且具有临床意义的肾癌亚型。KIRC中的一个潜在治疗靶点是二硫化物诱导的细胞死亡(disulfidptosis),这是一种由二硫键应激诱导的新型细胞死亡模式。本研究的目的是开发一种预后模型,以探讨KIRC中不同二硫化物诱导的细胞死亡基因分型的临床意义。对10个二硫化物死亡基因的染色体定位、表达模式、突变图谱、拷贝数变异和预后意义进行了综合分析。基于二硫化物诱导的细胞死亡基因表达模式,使用非负矩阵分解(NMF)分型方法将患者分为不同的亚型。对KIRC数据集使用加权基因共表达网络分析(WGCNA)来识别亚型簇之间的差异表达基因。使用LASSO-Cox回归创建风险特征,并通过生存分析进行验证。研究了风险评分与免疫细胞浸润、肿瘤微环境特征和通路富集分析之间的相互作用。初步研究结果突出了KIRC中特定二硫化物相关基因(DRGs)的差异表达,基因组不稳定性和体细胞突变分析揭示了它们在癌症进展中的关键作用。NMF聚类将KIRC患者分为具有不同生存结果和免疫特征的亚组,层次聚类识别与关键生物学和临床参数相关的基因模块,从而开发出一种经生存分析验证的风险分层模型(LRP8、RNASE2、CLIP4、HAS2、SLC22A11和KCTD12),并可预测免疫浸润和药物敏感性。通路富集分析进一步描绘了高危和低危患者之间的差异分子通路,为个性化治疗提供了潜在靶点。最后,正常细胞和KIRC细胞之间模型基因的差异表达分析为KIRC的分子机制提供了见解,突出了潜在的生物标志物和治疗靶点。本研究有助于对KIRC的理解,并为KIRC患者的个性化管理提供了一种使用二硫化物诱导的细胞死亡基因的潜在预后模型。风险特征显示出临床适用性,并揭示了与二硫键诱导的细胞死亡相关的生物学机制。