Suppr超能文献

可重光照体积面部的深入分析

A Deeper Analysis of Volumetric Relightable Faces.

作者信息

Rao Pramod, Mallikarjun B R, Fox Gereon, Weyrich Tim, Bickel Bernd, Pfister Hanspeter, Matusik Wojciech, Zhan Fangneng, Tewari Ayush, Theobalt Christian, Elgharib Mohamed

机构信息

Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany.

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.

出版信息

Int J Comput Vis. 2024;132(4):1148-1166. doi: 10.1007/s11263-023-01899-3. Epub 2023 Oct 31.

Abstract

Portrait viewpoint and illumination editing is an important problem with several applications in VR/AR, movies, and photography. Comprehensive knowledge of geometry and illumination is critical for obtaining photorealistic results. Current methods are unable to explicitly model in 3 while handling both viewpoint and illumination editing from a single image. In this paper, we propose VoRF, a novel approach that can take even a single portrait image as input and relight human heads under novel illuminations that can be viewed from arbitrary viewpoints. VoRF represents a human head as a continuous volumetric field and learns a prior model of human heads using a coordinate-based MLP with individual latent spaces for identity and illumination. The prior model is learned in an auto-decoder manner over a diverse class of head shapes and appearances, allowing VoRF to generalize to novel test identities from a single input image. Additionally, VoRF has a reflectance MLP that uses the intermediate features of the prior model for rendering One-Light-at-A-Time (OLAT) images under novel views. We synthesize novel illuminations by combining these OLAT images with target environment maps. Qualitative and quantitative evaluations demonstrate the effectiveness of VoRF for relighting and novel view synthesis, even when applied to unseen subjects under uncontrolled illumination. This work is an extension of Rao et al. (VoRF: Volumetric Relightable Faces 2022). We provide extensive evaluation and ablative studies of our model and also provide an application, where any face can be relighted using textual input.

摘要

人像视角与光照编辑是一个重要问题,在虚拟现实/增强现实、电影和摄影等领域有多种应用。全面掌握几何和光照知识对于获得逼真的效果至关重要。当前的方法在从单张图像处理视角和光照编辑时,无法在三维空间中进行显式建模。在本文中,我们提出了VoRF,这是一种新颖的方法,它甚至可以将单张人像图像作为输入,并在可以从任意视角查看的新光照下对人头进行重新打光。VoRF将人头表示为一个连续的体素场,并使用具有用于身份和光照的单独潜在空间的基于坐标的多层感知器来学习人头的先验模型。先验模型是以自动解码器的方式在各种不同的头部形状和外观上学习的,这使得VoRF能够从单张输入图像推广到新的测试身份。此外,VoRF有一个反射率多层感知器,它使用先验模型的中间特征在新视角下渲染逐次单光(OLAT)图像。我们通过将这些OLAT图像与目标环境贴图相结合来合成新的光照。定性和定量评估表明,即使应用于在不受控制的光照下的未见过的对象,VoRF在重新打光和新视角合成方面也是有效的。这项工作是Rao等人(VoRF:体积可重新打光的面部,2022年)工作的扩展。我们对我们的模型进行了广泛的评估和消融研究,还提供了一个应用程序,在其中可以使用文本输入对任何面部进行重新打光。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1495/10965625/6794f07cb50a/11263_2023_1899_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验