State Key Laboratory of Chemical Biology, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China.
Huzhou Zhongke Center of Bio-Synthetic Innovation, Huzhou, China.
Appl Environ Microbiol. 2024 Apr 17;90(4):e0015024. doi: 10.1128/aem.00150-24. Epub 2024 Mar 29.
Avilamycins, which possess potent inhibitory activity against Gram-positive bacteria, are a group of oligosaccharide antibiotics produced by . Among these structurally related oligosaccharide antibiotics, avilamycin serves as the main bioactive component in veterinary drugs and animal feed additives, which differs from avilamycin only in the redox state of the two-carbon branched-chain of the terminal octose moiety. However, the mechanisms underlying assembly and modification of the oligosaccharide chain to diversify individual avilamycins remain poorly understood. Here, we report that AviZ1, an aldo-keto reductase in the avilamycin pathway, can catalyze the redox conversion between avilamycins and . Remarkably, the ratio of these two components produced by AviZ1 depends on the utilization of specific redox cofactors, namely NADH/NAD or NADPH/NADP. These findings are inspired by gene disruption and complementation experiments and are further supported by enzymatic activity assays, kinetic analyses, and cofactor affinity studies on AviZ1-catalyzed redox reactions. Additionally, the results from sequence analysis, structure prediction, and site-directed mutagenesis of AviZ1 validate it as an NADH/NAD-favored aldo-keto reductase that primarily oxidizes avilamycin to form avilamycin by utilizing abundant NAD . Building upon the biological function and catalytic activity of AviZ1, overexpressing AviZ1 in is thus effective to improve the yield and proportion of avilamycin in the fermentation profile of avilamycins. This study represents, to our knowledge, the first characterization of biochemical reactions involved in avilamycin biosynthesis and contributes to the construction of high-performance strains with industrial value.IMPORTANCEAvilamycins are a group of oligosaccharide antibiotics produced by , which can be used as veterinary drugs and animal feed additives. Avilamycin is the most bioactive component, differing from avilamycin only in the redox state of the two-carbon branched-chain of the terminal octose moiety. Currently, the biosynthetic pathway of avilamycins is not clear. Here, we report that AviZ1, an aldo-keto reductase in the avilamycin pathway, can catalyze the redox conversion between avilamycins and . More importantly, AviZ1 exhibits a unique NADH/NAD preference, allowing it to efficiently catalyze the oxidation of avilamycin to form avilamycin using abundant NAD in cells. Thus, overexpressing AviZ1 in is effective to improve the yield and proportion of avilamycin in the fermentation profile of avilamycins. This study serves as an enzymological guide for rational strain design, and the resulting high-performance strains have significant industrial value.
阿维拉霉素是一组具有很强抑制革兰氏阳性菌活性的寡糖抗生素,由 产生。在这些结构相关的寡糖抗生素中,阿维拉霉素 是兽药和动物饲料添加剂的主要生物活性成分,与阿维拉霉素 不同的是,其末端八糖部分的两个碳支链的氧化还原状态不同。然而,阿维拉霉素的寡糖链组装和修饰机制仍知之甚少。在这里,我们报告阿维拉霉素途径中的醛酮还原酶 AviZ1 可以催化阿维拉霉素 和 的氧化还原转化。值得注意的是,AviZ1 产生的这两种成分的比例取决于特定氧化还原辅因子的利用,即 NADH/NAD+或 NADPH/NADP+。这些发现受到基因敲除和互补实验的启发,并通过 AviZ1 催化的氧化还原反应的酶活性测定、动力学分析和辅因子亲和力研究得到进一步支持。此外,AviZ1 的序列分析、结构预测和定点突变的结果验证了它是一种 NADH/NAD+偏好的醛酮还原酶,主要通过利用丰富的 NAD+将阿维拉霉素 氧化为阿维拉霉素 。基于 AviZ1 的生物学功能和催化活性,在 中过表达 AviZ1 可有效提高阿维拉霉素在阿维拉霉素发酵谱中的产量和比例。这项研究代表了我们对阿维拉霉素生物合成中涉及的生化反应的首次特征描述,并有助于构建具有工业价值的高性能菌株。
阿维拉霉素是由 产生的一组寡糖抗生素,可用作兽药和动物饲料添加剂。阿维拉霉素 是最具生物活性的成分,与阿维拉霉素 不同的是,其末端八糖部分的两个碳支链的氧化还原状态不同。目前,阿维拉霉素的生物合成途径尚不清楚。在这里,我们报告阿维拉霉素途径中的醛酮还原酶 AviZ1 可以催化阿维拉霉素 和 的氧化还原转化。更重要的是,AviZ1 表现出独特的 NADH/NAD+偏好,使其能够有效地利用细胞中丰富的 NAD+将阿维拉霉素 氧化为阿维拉霉素 。因此,在 中过表达 AviZ1 可有效提高阿维拉霉素在阿维拉霉素发酵谱中的产量和比例。这项研究为合理的菌株设计提供了酶学指导,由此产生的高性能菌株具有重要的工业价值。