Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
The wellbeing services county of Central Finland, Jyväskylä, Finland.
Cancer Prev Res (Phila). 2024 Jun 4;17(6):243-254. doi: 10.1158/1940-6207.CAPR-23-0368.
Lynch syndrome (LS) is the most common autosomal dominant cancer syndrome and is characterized by high genetic cancer risk modified by lifestyle factors. This study explored whether a circulating miRNA (c-miR) signature predicts LS cancer incidence within a 4-year prospective surveillance period. To gain insight how lifestyle behavior could affect LS cancer risk, we investigated whether the cancer-predicting c-miR signature correlates with known risk-reducing factors such as physical activity, body mass index (BMI), dietary fiber, or NSAID usage. The study included 110 c-miR samples from LS carriers, 18 of whom were diagnosed with cancer during a 4-year prospective surveillance period. Lasso regression was utilized to find c-miRs associated with cancer risk. Individual risk sum derived from the chosen c-miRs was used to develop a model to predict LS cancer incidence. This model was validated using 5-fold cross-validation. Correlation and pathway analyses were applied to inspect biological functions of c-miRs. Pearson correlation was used to examine the associations of c-miR risk sum and lifestyle factors. hsa-miR-10b-5p, hsa-miR-125b-5p, hsa-miR-200a-3p, hsa-miR-3613-5p, and hsa-miR-3615 were identified as cancer predictors by Lasso, and their risk sum score associated with higher likelihood of cancer incidence (HR 2.72, 95% confidence interval: 1.64-4.52, C-index = 0.72). In cross-validation, the model indicated good concordance with the average C-index of 0.75 (0.6-1.0). Coregulated hsa-miR-10b-5p, hsa-miR-125b-5p, and hsa-miR-200a-3p targeted genes involved in cancer-associated biological pathways. The c-miR risk sum score correlated with BMI (r = 0.23, P < 0.01). In summary, BMI-associated c-miRs predict LS cancer incidence within 4 years, although further validation is required.
The development of cancer risk prediction models is key to improving the survival of patients with LS. This pilot study describes a serum miRNA signature-based risk prediction model that predicts LS cancer incidence within 4 years, although further validation is required.
林奇综合征(LS)是最常见的常染色体显性遗传癌症综合征,其特征是遗传癌症风险高,受生活方式因素影响。本研究旨在探讨循环 miRNA(c-miR)特征是否可预测 LS 癌症的 4 年前瞻性监测期内的发病情况。为了深入了解生活方式行为如何影响 LS 癌症风险,我们研究了癌症预测性 c-miR 特征是否与已知的风险降低因素相关,如身体活动、体重指数(BMI)、膳食纤维或 NSAID 使用情况。该研究纳入了 110 名 LS 携带者的 110 个 c-miR 样本,其中 18 名在 4 年的前瞻性监测期内被诊断为癌症。采用套索回归法寻找与癌症风险相关的 c-miRs。从选定的 c-miRs 中得出的个体风险总和用于开发预测 LS 癌症发病的模型。该模型采用 5 倍交叉验证进行验证。应用相关性和通路分析来检测 c-miRs 的生物学功能。采用 Pearson 相关性分析检验 c-miR 风险总和与生活方式因素的相关性。hsa-miR-10b-5p、hsa-miR-125b-5p、hsa-miR-200a-3p、hsa-miR-3613-5p 和 hsa-miR-3615 通过 Lasso 被鉴定为癌症预测因子,其风险总和与更高的癌症发病可能性相关(HR 2.72,95%置信区间:1.64-4.52,C 指数=0.72)。在交叉验证中,模型的平均 C 指数为 0.75(0.6-1.0),表明一致性较好。核心调控的 hsa-miR-10b-5p、hsa-miR-125b-5p 和 hsa-miR-200a-3p 的靶向基因参与癌症相关的生物学通路。c-miR 风险总和与 BMI 相关(r=0.23,P<0.01)。总之,4 年内 BMI 相关的 c-miRs 可预测 LS 癌症的发病情况,但需要进一步验证。
癌症风险预测模型的开发是提高 LS 患者生存率的关键。本初步研究描述了一种基于血清 miRNA 特征的风险预测模型,可预测 LS 癌症在 4 年内的发病情况,但需要进一步验证。