Xiao Peng, El Sachat Alexandros, Angel Emigdio Chávez, Ng Ryan C, Nikoulis Giorgos, Kioseoglou Joseph, Termentzidis Konstantinos, Sotomayor Torres Clivia M, Sledzinska Marianna
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
Departamento de Física, Universidad Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
Sci Adv. 2024 Mar 29;10(13):eadm8825. doi: 10.1126/sciadv.adm8825.
Effective thermal management of electronic devices encounters substantial challenges owing to the notable power densities involved. Here, we propose layered MoS phononic crystals (PnCs) that can effectively reduce thermal conductivity (κ) with relatively small disruption of electrical conductivity (σ), offering a potential thermal management solution for nanoelectronics. These layered PnCs exhibit remarkable efficiency in reducing κ, surpassing that of Si and SiC PnCs with similar periodicity by ~100-fold. Specifically, in suspended MoS PnCs, we measure an exceptionally low κ down to 0.1 watts per meter kelvin, below the amorphous limit while preserving the crystalline structure. These findings are supported by molecular dynamics simulations that account for the film thickness, porosity, and temperature. We demonstrate the approach efficiency by fabricating suspended heat-routing structures that effectively confine and guide heat flow in prespecified directions. This study underpins the immense potential of layered materials as directional heat spreaders, thermal insulators, and active components for thermoelectric devices.
由于电子设备涉及的功率密度显著,其有效的热管理面临巨大挑战。在此,我们提出了层状二硫化钼声子晶体(PnCs),它能够在对电导率(σ)干扰相对较小的情况下有效降低热导率(κ),为纳米电子学提供了一种潜在的热管理解决方案。这些层状PnCs在降低κ方面表现出显著的效率,比具有相似周期性的硅和碳化硅PnCs高出约100倍。具体而言,在悬浮的二硫化钼PnCs中,我们测量到极低的κ,低至每米开尔文0.1瓦,低于非晶态极限,同时保留了晶体结构。这些发现得到了考虑薄膜厚度、孔隙率和温度的分子动力学模拟的支持。我们通过制造能够有效限制并引导热流沿预定方向流动的悬浮式热路由结构,展示了该方法的有效性。这项研究突出了层状材料作为定向热扩散器、热绝缘体以及热电器件有源组件的巨大潜力。