Suppr超能文献

CSCA U-Net:一种用于医学图像分割的通道和空间联合注意力卷积神经网络。

CSCA U-Net: A channel and space compound attention CNN for medical image segmentation.

机构信息

School of Computer Science, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China; Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Chengdu, 610041, Sichuan, China.

School of Computer Science, Jiangsu University of Science and Technology, Zhenjiang, 212100, Jiangsu, China.

出版信息

Artif Intell Med. 2024 Apr;150:102800. doi: 10.1016/j.artmed.2024.102800. Epub 2024 Feb 14.

Abstract

Image segmentation is one of the vital steps in medical image analysis. A large number of methods based on convolutional neural networks have emerged, which can extract abstract features from multiple-modality medical images, learn valuable information that is difficult to recognize by humans, and obtain more reliable results than traditional image segmentation approaches. U-Net, due to its simple structure and excellent performance, is widely used in medical image segmentation. In this paper, to further improve the performance of U-Net, we propose a channel and space compound attention (CSCA) convolutional neural network, CSCA U-Net in abbreviation, which increases the network depth and employs a double squeeze-and-excitation (DSE) block in the bottleneck layer to enhance feature extraction and obtain more high-level semantic features. Moreover, the characteristics of the proposed method are three-fold: (1) channel and space compound attention (CSCA) block, (2) cross-layer feature fusion (CLFF), and (3) deep supervision (DS). Extensive experiments on several available medical image datasets, including Kvasir-SEG, CVC-ClinicDB, CVC-ColonDB, ETIS, CVC-T, 2018 Data Science Bowl (2018 DSB), ISIC 2018, and JSUAH-Cerebellum, show that CSCA U-Net achieves competitive results and significantly improves generalization performance. The codes and trained models are available at https://github.com/xiaolanshu/CSCA-U-Net.

摘要

图像分割是医学图像分析中的重要步骤之一。大量基于卷积神经网络的方法已经出现,这些方法可以从多模态医学图像中提取抽象特征,学习人类难以识别的有价值信息,并获得比传统图像分割方法更可靠的结果。U-Net 由于其结构简单、性能优异,被广泛应用于医学图像分割。在本文中,为了进一步提高 U-Net 的性能,我们提出了一种通道和空间复合注意力(CSCA)卷积神经网络,简称 CSCA U-Net,它增加了网络的深度,并在瓶颈层中采用了双挤压激励(DSE)模块,以增强特征提取并获得更高层次的语义特征。此外,该方法具有三个特点:(1)通道和空间复合注意力(CSCA)模块,(2)跨层特征融合(CLFF),(3)深度监督(DS)。在包括 Kvasir-SEG、CVC-ClinicDB、CVC-ColonDB、ETIS、CVC-T、2018 数据科学碗(2018 DSB)、ISIC 2018 和 JSUAH-Cerebellum 在内的几个可用医学图像数据集上进行了广泛的实验,结果表明 CSCA U-Net 取得了有竞争力的结果,并显著提高了泛化性能。代码和训练模型可在 https://github.com/xiaolanshu/CSCA-U-Net 上获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验