Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom; School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, United Kingdom.
Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, CB2 0RE, United Kingdom.
Comput Biol Med. 2021 Oct;137:104815. doi: 10.1016/j.compbiomed.2021.104815. Epub 2021 Sep 2.
Colonoscopy remains the gold-standard screening for colorectal cancer. However, significant miss rates for polyps have been reported, particularly when there are multiple small adenomas. This presents an opportunity to leverage computer-aided systems to support clinicians and reduce the number of polyps missed.
In this work we introduce the Focus U-Net, a novel dual attention-gated deep neural network, which combines efficient spatial and channel-based attention into a single Focus Gate module to encourage selective learning of polyp features. The Focus U-Net incorporates several further architectural modifications, including the addition of short-range skip connections and deep supervision. Furthermore, we introduce the Hybrid Focal loss, a new compound loss function based on the Focal loss and Focal Tversky loss, designed to handle class-imbalanced image segmentation. For our experiments, we selected five public datasets containing images of polyps obtained during optical colonoscopy: CVC-ClinicDB, Kvasir-SEG, CVC-ColonDB, ETIS-Larib PolypDB and EndoScene test set. We first perform a series of ablation studies and then evaluate the Focus U-Net on the CVC-ClinicDB and Kvasir-SEG datasets separately, and on a combined dataset of all five public datasets. To evaluate model performance, we use the Dice similarity coefficient (DSC) and Intersection over Union (IoU) metrics.
Our model achieves state-of-the-art results for both CVC-ClinicDB and Kvasir-SEG, with a mean DSC of 0.941 and 0.910, respectively. When evaluated on a combination of five public polyp datasets, our model similarly achieves state-of-the-art results with a mean DSC of 0.878 and mean IoU of 0.809, a 14% and 15% improvement over the previous state-of-the-art results of 0.768 and 0.702, respectively.
This study shows the potential for deep learning to provide fast and accurate polyp segmentation results for use during colonoscopy. The Focus U-Net may be adapted for future use in newer non-invasive colorectal cancer screening and more broadly to other biomedical image segmentation tasks similarly involving class imbalance and requiring efficiency.
结肠镜检查仍然是结直肠癌筛查的金标准。然而,已经报道了息肉的高漏诊率,特别是当有多发性小腺瘤时。这为利用计算机辅助系统来支持临床医生并减少漏诊的息肉数量提供了机会。
在这项工作中,我们引入了 Focus U-Net,这是一种新颖的双注意力门控深度神经网络,它将有效的空间和基于通道的注意力结合到单个 Focus Gate 模块中,以鼓励有选择地学习息肉特征。Focus U-Net 还采用了一些其他的架构修改,包括添加短程跳过连接和深度监督。此外,我们引入了混合焦点损失,这是一种新的基于焦点损失和焦点 Tversky 损失的复合损失函数,旨在处理类不平衡的图像分割。对于我们的实验,我们选择了五个包含光学结肠镜检查中获得的息肉图像的公共数据集:CVC-ClinicDB、Kvasir-SEG、CVC-ColonDB、ETIS-Larib PolypDB 和 EndoScene 测试集。我们首先进行了一系列的消融研究,然后分别在 CVC-ClinicDB 和 Kvasir-SEG 数据集以及五个公共数据集的组合数据集上评估了 Focus U-Net。为了评估模型性能,我们使用了 Dice 相似系数(DSC)和交并比(IoU)度量。
我们的模型在 CVC-ClinicDB 和 Kvasir-SEG 上都取得了最先进的结果,分别为 0.941 和 0.910 的平均 DSC。当在五个公共息肉数据集的组合上进行评估时,我们的模型也取得了最先进的结果,平均 DSC 为 0.878,平均 IoU 为 0.809,比之前的最先进结果 0.768 和 0.702 分别提高了 14%和 15%。
这项研究表明,深度学习有可能为结肠镜检查期间提供快速准确的息肉分割结果。Focus U-Net 可以适应未来在更新的非侵入性结直肠癌筛查和更广泛的其他生物医学图像分割任务中的使用,这些任务同样涉及类不平衡且需要效率。