Anaesthesiology and Intensive Care Medicine, Medius CLINIC NÜRTINGEN-Academic Teaching Hospital of the University of Tübingen, Auf dem Säer 1, 72622, Nürtingen, Germany.
Sci Rep. 2024 Mar 29;14(1):7478. doi: 10.1038/s41598-024-57971-6.
This study examined the possibility of estimating cardiac output (CO) using a multimodal stacking model that utilizes cardiopulmonary interactions during general anesthesia and outlined a retrospective application of machine learning regression model to a pre-collected dataset. The data of 469 adult patients (obtained from VitalDB) with normal pulmonary function tests who underwent general anesthesia were analyzed. The hemodynamic data in this study included non-invasive blood pressure, plethysmographic heart rate, and SpO. CO was recorded using Vigileo and EV1000 (pulse contour technique devices). Respiratory data included mechanical ventilation parameters and end-tidal CO levels. A generalized linear regression model was used as the metalearner for the multimodal stacking ensemble method. Random forest, generalized linear regression, gradient boosting machine, and XGBoost were used as base learners. A Bland-Altman plot revealed that the multimodal stacked ensemble model for CO prediction from 327 patients had a bias of - 0.001 L/min and - 0.271% when calculating the percentage of difference using the EV1000 device. Agreement of model CO prediction and measured Vigileo CO in 142 patients reported a bias of - 0.01 and - 0.333%. Overall, this model predicts CO compared to data obtained by the pulse contour technique CO monitors with good agreement.
本研究探讨了使用多模态堆叠模型估计心输出量(CO)的可能性,该模型利用全身麻醉期间的心肺相互作用,并概述了机器学习回归模型在预先收集的数据集上的回顾性应用。分析了 469 名接受全身麻醉且肺功能正常的成年患者(来自 VitalDB 获得)的血流动力学数据。本研究中的血流动力学数据包括无创血压、容积描记心率和 SpO。使用 Vigileo 和 EV1000(脉搏轮廓技术设备)记录 CO。呼吸数据包括机械通气参数和呼气末 CO 水平。广义线性回归模型被用作多模态堆叠集成方法的元学习者。随机森林、广义线性回归、梯度提升机和 XGBoost 被用作基础学习者。Bland-Altman 图显示,使用 EV1000 设备计算差值百分比时,来自 327 名患者的 CO 预测的多模态堆叠集成模型的偏差为-0.001 L/min 和-0.271%。在 142 名患者中,模型 CO 预测与测量的 Vigileo CO 的一致性报告偏差为-0.01 和-0.333%。总的来说,与使用脉搏轮廓技术 CO 监测器获得的数据相比,该模型对 CO 的预测具有良好的一致性。