Suppr超能文献

利用全身麻醉期间的心呼吸相互作用进行心输出量预测的多模态堆叠集成模型。

A multimodal stacked ensemble model for cardiac output prediction utilizing cardiorespiratory interactions during general anesthesia.

机构信息

Anaesthesiology and Intensive Care Medicine, Medius CLINIC NÜRTINGEN-Academic Teaching Hospital of the University of Tübingen, Auf dem Säer 1, 72622, Nürtingen, Germany.

出版信息

Sci Rep. 2024 Mar 29;14(1):7478. doi: 10.1038/s41598-024-57971-6.

Abstract

This study examined the possibility of estimating cardiac output (CO) using a multimodal stacking model that utilizes cardiopulmonary interactions during general anesthesia and outlined a retrospective application of machine learning regression model to a pre-collected dataset. The data of 469 adult patients (obtained from VitalDB) with normal pulmonary function tests who underwent general anesthesia were analyzed. The hemodynamic data in this study included non-invasive blood pressure, plethysmographic heart rate, and SpO. CO was recorded using Vigileo and EV1000 (pulse contour technique devices). Respiratory data included mechanical ventilation parameters and end-tidal CO levels. A generalized linear regression model was used as the metalearner for the multimodal stacking ensemble method. Random forest, generalized linear regression, gradient boosting machine, and XGBoost were used as base learners. A Bland-Altman plot revealed that the multimodal stacked ensemble model for CO prediction from 327 patients had a bias of - 0.001 L/min and - 0.271% when calculating the percentage of difference using the EV1000 device. Agreement of model CO prediction and measured Vigileo CO in 142 patients reported a bias of - 0.01 and - 0.333%. Overall, this model predicts CO compared to data obtained by the pulse contour technique CO monitors with good agreement.

摘要

本研究探讨了使用多模态堆叠模型估计心输出量(CO)的可能性,该模型利用全身麻醉期间的心肺相互作用,并概述了机器学习回归模型在预先收集的数据集上的回顾性应用。分析了 469 名接受全身麻醉且肺功能正常的成年患者(来自 VitalDB 获得)的血流动力学数据。本研究中的血流动力学数据包括无创血压、容积描记心率和 SpO。使用 Vigileo 和 EV1000(脉搏轮廓技术设备)记录 CO。呼吸数据包括机械通气参数和呼气末 CO 水平。广义线性回归模型被用作多模态堆叠集成方法的元学习者。随机森林、广义线性回归、梯度提升机和 XGBoost 被用作基础学习者。Bland-Altman 图显示,使用 EV1000 设备计算差值百分比时,来自 327 名患者的 CO 预测的多模态堆叠集成模型的偏差为-0.001 L/min 和-0.271%。在 142 名患者中,模型 CO 预测与测量的 Vigileo CO 的一致性报告偏差为-0.01 和-0.333%。总的来说,与使用脉搏轮廓技术 CO 监测器获得的数据相比,该模型对 CO 的预测具有良好的一致性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1826/10980739/28e94abaeca4/41598_2024_57971_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验