Suppr超能文献

声发射在致密骨微损伤随机建模中的应用。

Acoustic emission applied to stochastic modeling of microdamage in compact bone.

机构信息

UPC-EEBE, GiES, Eduard Maristany, 14, 08036, Barcelona, Spain.

UPC-EEBE, GiES, Av. Víctor Balaguer, 11, 08800, Barcelona, Spain.

出版信息

Biomech Model Mechanobiol. 2024 Aug;23(4):1277-1287. doi: 10.1007/s10237-024-01838-2. Epub 2024 Mar 29.

Abstract

Exploring the stochastic intricacies of bone microstructure is a promising way to make progress on the practical issue of bone fracture. This study investigates the fracture of human complete ribs subjected to bending and using acoustic emission (AE) for microfailure detection. As the strain increases, the number of AE signals per unit of time rises until, beyond a certain threshold, an avalanche of signals occurs, indicating the aggregation of numerous microfailures into a macroscopic fracture. Since microfailures appear randomly throughout the bending test, and given the lack of a deterministic law and the random nature of microfailures during the bending test, we opted to develop a stochastic model to account for their occurrence within the irregular and random microstructure of the cortical bone. Notable discoveries encompass the significant correlation between adjusted parameters of the stochastic model and the total number of microfailures with anthropometric variables such as age and body mass index (BMI). The progression of microfailures with strain is significantly more pronounced with age and BMI, as measured by the rate of bone deterioration. In addition, the rate of microfailures is significantly impacted by BMI alone. It is also observed that the average energy of the identified AE events adheres to a precisely defined Pareto distribution for every specimen, with the principal exponent exhibiting a significant correlation with anthropometric variables. From a mathematical standpoint, the model can be described as a double Cox stochastic and explosive (coxplosive process) model. This further provides insight into the reason why the ribs of older individuals are considerably less resilient than those of younger individuals, breaking under a considerably lower maximum strain ( ).

摘要

探索骨微观结构的随机复杂性是解决骨折实际问题的一个很有前途的方法。本研究通过对弯曲状态下的人体完整肋骨进行的断裂实验,利用声发射(AE)技术进行微失效检测。随着应变的增加,单位时间内的 AE 信号数量会增加,直到超过某个阈值,大量的信号会突然出现,这表明大量微失效会聚集并发展成宏观断裂。由于微失效在整个弯曲测试过程中是随机出现的,而且由于在弯曲测试过程中缺乏确定性规律和微失效的随机性,我们选择开发一个随机模型来解释皮质骨不规则和随机微观结构中微失效的发生。值得注意的发现包括:调整随机模型的参数与微失效总数与年龄和体重指数(BMI)等人体测量学变量之间存在显著相关性。通过骨退化率衡量,微失效与应变的关系随年龄和 BMI 的增加而更加显著。此外,BMI 单独对微失效率有显著影响。还观察到,每个样本中识别出的 AE 事件的平均能量都符合精确定义的帕累托分布,主指数与人体测量学变量显著相关。从数学角度来看,该模型可以描述为双 Cox 随机和爆炸(coxplosive 过程)模型。这进一步解释了为什么老年人的肋骨比年轻人的肋骨韧性差得多,在较低的最大应变( )下就会断裂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ca6/11584445/9bfd84b7212a/10237_2024_1838_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验