Ullah Zakir, Subramanian Saravanan, Lim Haeseong, Dogan Nesibe A, Lee Joo Sung, Nguyen Thien S, Yavuz Cafer T
Institut de Ciència de Materials de Barcelona (ICMAB), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitari de Bellaterra, Cerdanyola del Vallès 08193, Spain.
Inorganic Materials and Catalysis Division, Council of Scientific and Industrial Research (CSIR)-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India.
ACS Appl Mater Interfaces. 2025 Mar 26;17(12):17767-17774. doi: 10.1021/acsami.4c01187. Epub 2024 Mar 30.
Fluoride is widely present in nature, and human exposure to it is generally regarded as inevitable. High levels of fluoride intake induce acute and chronic illnesses. To reduce potential harm to the general public, it is essential to create selective fluoride detectors capable of providing a colorimetric response for naked-eye detection without the need for sophisticated equipment. Here, we report a one-pot synthesis of four different diaminomaleonitrile-derived Schiff base sensors. The terephthalaldehyde adduct provided a strong color change visible to the naked eye at a F concentration level as low as 2 ppm. From the evaluation against other anions, such as CN, I, Br, Cl, NO, PO, OAc, and HSO, the molecular sensor displayed a visible color change exclusively upon exposure to fluoride, underscoring exceptional selectivity. As a key intermediate for understanding the mechanism, HF was confirmed by F nuclear magnetic resonance. Theoretical calculations suggested a deprotonation-triggered bathochromic shift brought about by the unique electronic structure of the sensor. Furthermore, the simple synthetic protocol from economically accessible materials allowed for the preparation of the compound on a large scale, rendering it a highly practical visual fluoride sensor.
氟化物广泛存在于自然界中,人们普遍认为人类不可避免地会接触到它。高剂量摄入氟化物会引发急慢性疾病。为了减少对公众的潜在危害,制造出能够提供比色响应以便进行肉眼检测且无需复杂设备的选择性氟化物探测器至关重要。在此,我们报告了一种一锅法合成四种不同的二氨基马来腈衍生席夫碱传感器。对苯二甲醛加合物在氟浓度低至2 ppm时就会产生肉眼可见的强烈颜色变化。通过与其他阴离子(如氰根、碘离子、溴离子、氯离子、硝酸根、磷酸根、醋酸根和硫酸氢根)进行对比评估,该分子传感器仅在暴露于氟化物时才会出现可见的颜色变化,突出了其卓越的选择性。作为理解机理的关键中间体,通过氟核磁共振证实了氟化氢的存在。理论计算表明,传感器独特的电子结构导致去质子化引发红移。此外,由经济易得的材料采用简单的合成方案能够大规模制备该化合物,使其成为一种高度实用的可视化氟化物传感器。