Suppr超能文献

军民合作质量改进计划概念:一个改善数据收集和结果评估的过程。

The Military-Civilian Partnership Quality Improvement Program Concept: A Process to Improve Data Collection and Outcomes Assessment.

机构信息

88th Medical Group, Wright Patterson Medical Center, Wright Patterson AFB, OH 45433, USA.

Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.

出版信息

Mil Med. 2024 Nov 5;189(11-12):e2307-e2313. doi: 10.1093/milmed/usae117.

Abstract

INTRODUCTION

Military-Civilian Partnerships (MCPs) are vital for maintaining the deployment readiness of military health care physicians. However, tracking their clinical activity has proven to be challenging. In this study, we introduce a locally driven process aimed at the passive collection of external clinical workload data. This process is designed to facilitate an assessment of MCP physicians' deployment readiness and the effectiveness of individual MCPs.

MATERIALS AND METHODS

From March 2020 to February 2023, we conducted a series of quality improvement projects at the Wright Patterson Medical Center (WPMC) to enhance our data collection efforts for MCP physicians. Our methodology encompassed several steps. First, we assessed our existing data collection processes and their outcomes to identify improvement areas. Next, we tested various data collection methods, including self-reporting, a web-based smart phone application, and an automated process based on billing or electronic health record data. Following this, we refined our data collection process, incorporating the identified improvements and systematically tracking outcomes. Finally, we evaluated the refined process in 2 different MCPs, with our primary outcome measure being the collection of monthly health care data.

RESULTS

Our examination at the WPMC initially identified several weaknesses in our established data collection efforts. These included unclear responsibility for data collection within the Medical Group, an inadequate roster of participating MCP physicians, and underutilization of military and community resources for data collection. To address these issues, we implemented revisions to our data collection process. These revisions included establishing clear responsibility for data collection through the Office of Military-Civilian Partnerships, introducing a regular "roll call" to match physicians to MCP agreements, passively collecting data each month through civilian partner billing or information technology offices, and integrating Office of Military-Civilian Partnership efforts into regular executive committee meetings. As a result, we observed a 4-fold increase in monthly data capture at WPMC, with similar gains when the refined process was implemented at an Air Force Center for the Sustainment of Trauma and Readiness Skills site.

CONCLUSIONS

The Military-Civilian Partnership Quality Improvement Program concept is an effective, locally driven process for enhancing the capture of external clinical workload data for military providers engaged in MCPs. Further examination of the Military-Civilian Partnership Quality Improvement Program process is needed at other institutions to validate its effectiveness and build a community of MCP champions.

摘要

简介

军民伙伴关系(MCPs)对于维持军事医疗保健医生的部署准备至关重要。然而,事实证明,跟踪他们的临床活动具有挑战性。在这项研究中,我们引入了一个本地驱动的流程,旨在被动收集外部临床工作量数据。该流程旨在评估 MCP 医生的部署准备情况和各个 MCP 的有效性。

材料和方法

从 2020 年 3 月到 2023 年 2 月,我们在莱特·帕特森医疗中心(WPMC)进行了一系列质量改进项目,以加强我们对 MCP 医生的数据收集工作。我们的方法包括几个步骤。首先,我们评估了现有的数据收集流程及其结果,以确定改进领域。接下来,我们测试了各种数据收集方法,包括自我报告、基于智能手机的网络应用程序以及基于计费或电子健康记录数据的自动流程。之后,我们改进了我们的数据收集流程,纳入了确定的改进措施,并系统地跟踪结果。最后,我们在两个不同的 MCP 中评估了改进后的流程,主要结果衡量标准是每月医疗保健数据的收集。

结果

我们在 WPMC 的检查最初确定了我们既定数据收集工作中的几个弱点。这些弱点包括医疗集团内数据收集责任不明确、参与 MCP 的医生名册不足以及军事和社区资源在数据收集方面的利用不足。为了解决这些问题,我们对数据收集流程进行了修订。这些修订包括通过军民伙伴关系办公室明确数据收集责任、定期进行“点名”以将医生与 MCP 协议匹配、每月通过民用合作伙伴计费或信息技术办公室被动收集数据,以及将军民伙伴关系工作纳入常规执行委员会会议。结果,我们观察到 WPMC 的每月数据捕获量增加了 4 倍,在空军维持创伤和准备技能中心实施改进后的流程时也取得了类似的收益。

结论

军民伙伴关系质量改进计划概念是一种有效的、本地驱动的流程,用于增强参与 MCP 的军事提供者的外部临床工作量数据的捕获。需要在其他机构进一步检查军民伙伴关系质量改进计划流程,以验证其有效性并建立 MCP 冠军社区。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验