Suppr超能文献

肿瘤缺氧靶向治疗用细菌

Hypoxia-targeting bacteria in cancer therapy.

机构信息

Department of Neurology, Johns Hopkins University, 600 North Wolfe Street, Meyer 8-149 J, Baltimore, MD 21287, USA.

Kennedy Krieger Institute, Lab 520, 707 N Broadway, Baltimore, MD 21205, USA.

出版信息

Semin Cancer Biol. 2024 May;100:39-48. doi: 10.1016/j.semcancer.2024.03.003. Epub 2024 Mar 29.

Abstract

Tumor hypoxia plays a crucial role in driving cancer progression and fostering resistance to therapies by contributing significantly to chemoresistance, radioresistance, angiogenesis, invasiveness, metastasis, altered cell metabolism, and genomic instability. Despite the challenges encountered in therapeutically addressing tumor hypoxia with conventional drugs, a noteworthy alternative has emerged through the utilization of anaerobic oncolytic bacteria. These bacteria exhibit a preference for accumulating and proliferating within the hypoxic regions of tumors, where they can initiate robust antitumor effects and immune responses. Through simple genetic manipulation or sophisticated synthetic bioengineering, these bacteria can be further optimized to improve safety and antitumor activities, or they can be combined synergistically with chemotherapies, radiation, or other immunotherapies. In this review, we explore the potential benefits and challenges associated with this innovative anticancer approach, addressing issues related to clinical translation, particularly as several strains have progressed to clinical evaluation.

摘要

肿瘤缺氧在推动癌症进展和对治疗产生耐药性方面起着关键作用,主要通过促进化疗耐药性、放疗耐药性、血管生成、侵袭性、转移、细胞代谢改变和基因组不稳定性来实现。尽管在使用传统药物治疗肿瘤缺氧方面存在挑战,但一种值得注意的替代方法已经出现,即利用厌氧溶瘤细菌。这些细菌在肿瘤缺氧区域内积累和增殖,在那里它们可以引发强大的抗肿瘤作用和免疫反应。通过简单的遗传操作或复杂的合成生物工程,这些细菌可以进一步优化以提高安全性和抗肿瘤活性,或者可以与化疗、放疗或其他免疫疗法协同作用。在这篇综述中,我们探讨了这种创新抗癌方法的潜在益处和挑战,解决了与临床转化相关的问题,特别是因为有几个菌株已经进入临床评估。

相似文献

1
Hypoxia-targeting bacteria in cancer therapy.
Semin Cancer Biol. 2024 May;100:39-48. doi: 10.1016/j.semcancer.2024.03.003. Epub 2024 Mar 29.
2
Bacteria-cancer interactions: bacteria-based cancer therapy.
Exp Mol Med. 2019 Dec 11;51(12):1-15. doi: 10.1038/s12276-019-0297-0.
3
Targeting hypoxia in cancer therapy.
Nat Rev Cancer. 2011 Jun;11(6):393-410. doi: 10.1038/nrc3064.
4
Hypoxic stress: obstacles and opportunities for innovative immunotherapy of cancer.
Oncogene. 2017 Jan 26;36(4):439-445. doi: 10.1038/onc.2016.225. Epub 2016 Jun 27.
5
Targeting hypoxia in the tumor microenvironment: a potential strategy to improve cancer immunotherapy.
J Exp Clin Cancer Res. 2021 Jan 9;40(1):24. doi: 10.1186/s13046-020-01820-7.
6
Tumour-targeting bacteria engineered to fight cancer.
Nat Rev Cancer. 2018 Dec;18(12):727-743. doi: 10.1038/s41568-018-0070-z.
7
Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions.
Signal Transduct Target Ther. 2023 Feb 17;8(1):70. doi: 10.1038/s41392-023-01332-8.
8
Hypoxia: A Double-Edged Sword in Cancer Therapy.
Cancer Invest. 2016 Nov 25;34(10):536-545. doi: 10.1080/07357907.2016.1245317. Epub 2016 Nov 8.
9
Targeting hypoxia and hypoxia-inducible factor-1 in the tumor microenvironment for optimal cancer immunotherapy.
J Cell Physiol. 2022 Feb;237(2):1285-1298. doi: 10.1002/jcp.30643. Epub 2021 Nov 19.
10
Cancer therapy with a replicating oncolytic adenovirus targeting the hypoxic microenvironment of tumors.
Clin Cancer Res. 2004 Dec 15;10(24):8603-12. doi: 10.1158/1078-0432.CCR-04-1432.

引用本文的文献

1
Neutrophil Dynamics in Response to Cancer Therapies.
Cancers (Basel). 2025 Aug 7;17(15):2593. doi: 10.3390/cancers17152593.
2
Oncolytic bacteria: A revolutionary approach to cancer therapy.
Open Life Sci. 2025 Jun 10;20(1):20251076. doi: 10.1515/biol-2025-1076. eCollection 2025.
3
FOLR1-Targeted Oxygen-Delivering Nanosomes Enhance Chemo-Induced Apoptosis in Hypoxic Cancer.
Int J Nanomedicine. 2025 May 28;20:6875-6889. doi: 10.2147/IJN.S513688. eCollection 2025.
5
Biocompatible cloaking of bacteria for effective tumor imaging and therapy.
Mater Today Bio. 2025 Apr 22;32:101788. doi: 10.1016/j.mtbio.2025.101788. eCollection 2025 Jun.
8
Microbiota in tumors: new factor influencing cancer development.
Cancer Gene Ther. 2024 Dec;31(12):1773-1785. doi: 10.1038/s41417-024-00833-0. Epub 2024 Sep 28.
9
Tumor hypoxia in immune infiltration and prognosis of bladder cancer.
Transl Cancer Res. 2024 Jul 31;13(7):3273-3284. doi: 10.21037/tcr-23-2375. Epub 2024 Jul 26.

本文引用的文献

1
Advances in PET and MRI imaging of tumor hypoxia.
Front Med (Lausanne). 2023 Feb 9;10:1055062. doi: 10.3389/fmed.2023.1055062. eCollection 2023.
2
Attenuated Salmonella potentiate PD-L1 blockade immunotherapy in a preclinical model of colorectal cancer.
Front Immunol. 2022 Dec 20;13:1017780. doi: 10.3389/fimmu.2022.1017780. eCollection 2022.
4
Neutrophil depletion enhanced the -NT therapy in mouse and rabbit tumor models.
Neurooncol Adv. 2021 Dec 21;4(1):vdab184. doi: 10.1093/noajnl/vdab184. eCollection 2022 Jan-Dec.
5
Targeting hypoxia and hypoxia-inducible factor-1 in the tumor microenvironment for optimal cancer immunotherapy.
J Cell Physiol. 2022 Feb;237(2):1285-1298. doi: 10.1002/jcp.30643. Epub 2021 Nov 19.
6
Targeting Hypoxia: Hypoxia-Activated Prodrugs in Cancer Therapy.
Front Oncol. 2021 Jul 29;11:700407. doi: 10.3389/fonc.2021.700407. eCollection 2021.
7
-Mediated Specific Delivery of Nanoparticles for Tumor Therapy.
Int J Nanomedicine. 2021 Jul 6;16:4643-4659. doi: 10.2147/IJN.S315650. eCollection 2021.
8
Methods and Techniques to Facilitate the Development of NT as an Effective, Therapeutic Oncolytic Bacteria.
Front Microbiol. 2021 Mar 29;12:624618. doi: 10.3389/fmicb.2021.624618. eCollection 2021.
9
Perspectives on Oncolytic in Cancer Immunotherapy-A Promising Strategy.
Front Immunol. 2021 Feb 25;12:615930. doi: 10.3389/fimmu.2021.615930. eCollection 2021.
10
Strain-Specific Enhances the Efficacy of Cancer Therapeutics in Tumor-Bearing Mice.
Cancers (Basel). 2021 Feb 25;13(5):957. doi: 10.3390/cancers13050957.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验