Zhang Nian, Ren Guoxi, Li Lili, Wang Zhi, Yu Pengfei, Li Xiaobao, Zhou Jing, Zhang Hui, Zhang Linjuan, Liu Zhi, Liu Xiaosong
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China.
State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
Nat Commun. 2024 Mar 30;15(1):2777. doi: 10.1038/s41467-024-47071-4.
Garnet-type LiLaZrTaO (LLZO) is considered a promising solid electrolyte, but the surface degradation in air hinders its application for all-solid-state battery. Recent studies have mainly focused on the final products of the LLZO surface reactions due to lacking of powerful in situ characterization methods. Here, we use ambient pressure X-ray spectroscopies to in situ investigate the dynamical evolution of LLZO surface in different gas environments. The newly developed ambient pressure mapping of resonant Auger spectroscopy clearly distinguishes the lithium containing species, including LiOH, LiO, LiCO and lattice oxygen. The reaction of CO with LLZO to form LiCO is found to be a thermodynamically favored self-limiting reaction. On the contrary, the reaction of HO with LLZO lags behind that of CO, but intensifies at high pressure. More interestingly, the results provide direct spectroscopic evidence for the existence of Li/H exchange and reveal the importance of the initial layer formed on clean electrolyte surface in determining their air stability. This work demonstrates that the newly developed in situ technologies pave a new way to investigate the oxygen evolution and surface degradation mechanism in energy materials.
石榴石型LiLaZrTaO(LLZO)被认为是一种很有前景的固体电解质,但在空气中的表面降解阻碍了其在全固态电池中的应用。由于缺乏强大的原位表征方法,最近的研究主要集中在LLZO表面反应的最终产物上。在这里,我们使用常压X射线光谱原位研究LLZO表面在不同气体环境中的动态演变。新开发的共振俄歇光谱常压映射清楚地分辨出含锂物种,包括LiOH、LiO、LiCO和晶格氧。发现CO与LLZO反应形成LiCO是一个热力学上有利的自限性反应。相反,HO与LLZO的反应落后于CO,但在高压下会加剧。更有趣的是,这些结果为Li/H交换的存在提供了直接的光谱证据,并揭示了在清洁电解质表面形成的初始层在决定其空气稳定性方面的重要性。这项工作表明,新开发的原位技术为研究能源材料中的析氧和表面降解机制开辟了一条新途径。