Suppr超能文献

铝取代的Li7La3Zr2O12固体电解质的晶粒尺寸、表面组成、空气稳定性和界面电阻之间的相互关系。

Interrelationships among Grain Size, Surface Composition, Air Stability, and Interfacial Resistance of Al-Substituted Li7La3Zr2O12 Solid Electrolytes.

作者信息

Cheng Lei, Wu Cheng Hao, Jarry Angelique, Chen Wei, Ye Yifan, Zhu Junfa, Kostecki Robert, Persson Kristin, Guo Jinghua, Salmeron Miquel, Chen Guoying, Doeff Marca

机构信息

†Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

‡Department of Material Sciences and Engineering, University of California, Berkeley, California 94720, United States.

出版信息

ACS Appl Mater Interfaces. 2015 Aug 19;7(32):17649-55. doi: 10.1021/acsami.5b02528. Epub 2015 Aug 4.

Abstract

The interfacial resistances of symmetrical lithium cells containing Al-substituted Li7La3Zr2O12 (LLZO) solid electrolytes are sensitive to their microstructures and histories of exposure to air. Air exposure of LLZO samples with large grain sizes (∼150 μm) results in dramatically increased interfacial impedances in cells containing them, compared to those with pristine large-grained samples. In contrast, a much smaller difference is seen between cells with small-grained (∼20 μm) pristine and air-exposed LLZO samples. A combination of soft X-ray absorption (sXAS) and Raman spectroscopy, with probing depths ranging from nanometer to micrometer scales, revealed that the small-grained LLZO pellets are more air-stable than large-grained ones, forming far less surface Li2CO3 under both short- and long-term exposure conditions. Surface sensitive X-ray photoelectron spectroscopy (XPS) indicates that the better chemical stability of the small-grained LLZO is related to differences in the distribution of Al and Li at sample surfaces. Density functional theory calculations show that LLZO can react via two different pathways to form Li2CO3. The first, more rapid, pathway involves a reaction with moisture in air to form LiOH, which subsequently absorbs CO2 to form Li2CO3. The second, slower, pathway involves direct reaction with CO2 and is favored when surface lithium contents are lower, as with the small-grained samples. These observations have important implications for the operation of solid-state lithium batteries containing LLZO because the results suggest that the interfacial impedances of these devices is critically dependent upon specific characteristics of the solid electrolyte and how it is prepared.

摘要

含有铝取代的Li7La3Zr2O12(LLZO)固体电解质的对称锂电池的界面电阻对其微观结构和暴露于空气中的历史很敏感。与原始大晶粒样品相比,大晶粒尺寸(约150μm)的LLZO样品暴露于空气中会导致包含它们的电池中的界面阻抗显著增加。相比之下,小晶粒(约20μm)的原始LLZO样品和暴露于空气中的LLZO样品之间的差异要小得多。软X射线吸收(sXAS)和拉曼光谱的组合,其探测深度范围从纳米到微米尺度,表明小晶粒LLZO颗粒比大晶粒颗粒更耐空气,在短期和长期暴露条件下形成的表面Li2CO3要少得多。表面敏感的X射线光电子能谱(XPS)表明,小晶粒LLZO更好的化学稳定性与样品表面铝和锂的分布差异有关。密度泛函理论计算表明,LLZO可以通过两种不同的途径反应形成Li2CO3。第一种途径更快,涉及与空气中的水分反应形成LiOH,随后LiOH吸收CO2形成Li2CO3。第二种途径较慢,涉及与CO2直接反应,当表面锂含量较低时(如小晶粒样品)更有利。这些观察结果对包含LLZO的固态锂电池的运行具有重要意义,因为结果表明这些器件的界面阻抗严重依赖于固体电解质的特定特性及其制备方式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验