Wu Jian-Fang, Pu Bo-Wei, Wang Da, Shi Si-Qi, Zhao Ning, Guo Xiangxin, Guo Xin
Laboratory of Solid State Ionics, School of Materials Science and Engineering , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China.
School of Materials Science and Engineering , Shanghai University , Shanghai 200444 , P. R. China.
ACS Appl Mater Interfaces. 2019 Jan 9;11(1):898-905. doi: 10.1021/acsami.8b18356. Epub 2018 Dec 17.
Introduction of inorganic solid electrolytes is believed to be an ultimate strategy to dismiss dendritic Li in high-energy Li-metal batteries (LMBs), and garnet-type LiLaZrO (LLZO) electrolytes are impressive candidates. However, the current density for stable Li plating/stripping in LLZO is still quite limited. Here, we create in situ formed Li-deficient shields by the high-temperature calcination at 900 °C. By this novel process, the formation of LiCO on LLZO is restrained, and then we successfully obtain LiCO-free LLZO after removing the Li-deficient compounds. Without any surface modification, LiCO-free LLZO shows an intrinsic "lithiophilicity" characteristic. The contact angles of metallic Li on LLZO garnets are assessed by the first-principle calculation to confirm the lithiophilicity characteristic of LLZO electrolytes. The wetting of metallic Li on the LiCO-free LLZO surface leads to a continuous and tight Li/LLZO interface, resulting in an ultralow interfacial resistance of 49 Ω cm and a homogeneous current distribution in the charge/discharge processes of LMBs. Consequently, the current density for the stable Li plating/stripping in LLZO increases to 900 μA cm at 60 °C, one of the highest current density for LMBs based on garnet-type LLZO electrolytes. Our findings not only offer insight into the lithiophilicity characteristics of LLZO electrolytes to suppress dendritic Li at high current densities but also expand the avenue toward high-performance, safe, and long-life energy-storage systems.
引入无机固体电解质被认为是解决高能锂金属电池(LMBs)中锂枝晶问题的终极策略,石榴石型LiLaZrO(LLZO)电解质是令人瞩目的候选材料。然而,LLZO中稳定锂电镀/剥离的电流密度仍然相当有限。在此,我们通过900℃的高温煅烧原位形成缺锂屏蔽层。通过这一新颖的工艺,抑制了LLZO上LiCO的形成,然后在去除缺锂化合物后成功获得了无LiCO的LLZO。无需任何表面改性,无LiCO的LLZO表现出固有的“亲锂性”特征。通过第一性原理计算评估金属锂在LLZO石榴石上的接触角,以确认LLZO电解质的亲锂性特征。金属锂在无LiCO的LLZO表面的润湿性导致形成连续且紧密的Li/LLZO界面,从而在LMBs的充放电过程中产生49Ω·cm的超低界面电阻和均匀的电流分布。因此,LLZO中稳定锂电镀/剥离的电流密度在60℃时增加到900μA·cm²,这是基于石榴石型LLZO电解质的LMBs的最高电流密度之一。我们的研究结果不仅为LLZO电解质在高电流密度下抑制锂枝晶的亲锂性特征提供了见解,还拓展了通往高性能、安全和长寿命储能系统的途径。