Division of Pediatric Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.
Duke Clinical Research Insitute, Duke University School of Medicine, Durham, NC, USA.
Gut Microbes. 2024 Jan-Dec;16(1):2333748. doi: 10.1080/19490976.2024.2333748. Epub 2024 Mar 30.
Antibiotic resistance is a global threat driven primarily by antibiotic use. We evaluated the effects of antibiotic exposures on the gut microbiomes and resistomes of children at high risk of colonization by antibiotic-resistant bacteria. We performed shotgun metagenomic sequencing of 691 serially collected fecal samples from 80 children (<18 years) undergoing hematopoietic cell transplantation. We evaluated the effects of aerobic (cefepime, vancomycin, fluoroquinolones, aminoglycosides, macrolides, and trimethoprim-sulfamethoxazole) and anaerobic (piperacillin-tazobactam, carbapenems, metronidazole, and clindamycin) antibiotic exposures on the diversity and composition of the gut microbiome and resistome. We identified 372 unique antibiotic resistance genes (ARGs); the most frequent ARGs identified encode resistance to tetracyclines ( = 88), beta-lactams ( = 84), and fluoroquinolones ( = 79). Both aerobic and anaerobic antibiotic exposures were associated with a decrease in the number of bacterial species (aerobic, β = 0.71, 95% CI: 0.64, 0.79; anaerobic, β = 0.66, 95% CI: 0.53, 0.82) and the number of unique ARGs (aerobic, β = 0.81, 95% CI: 0.74, 0.90; anaerobic, β = 0.73, 95% CI: 0.61, 0.88) within the gut metagenome. However, only antibiotic regimens that included anaerobic activity were associated with an increase in acquisition of new ARGs (anaerobic, β = 1.50; 95% CI: 1.12, 2.01) and an increase in the relative abundance of ARGs in the gut resistome (anaerobic, β = 1.62; 95% CI: 1.15, 2.27). Specific antibiotic exposures were associated with distinct changes in the number and abundance of ARGs for individual antibiotic classes. Our findings detail the impact of antibiotics on the gut microbiome and resistome and demonstrate that anaerobic antibiotics are particularly likely to promote acquisition and expansion of antibiotic-resistant bacteria.
抗生素耐药性是一种主要由抗生素使用驱动的全球性威胁。我们评估了抗生素暴露对高风险定植抗生素耐药菌儿童肠道微生物组和耐药组的影响。我们对 80 名接受造血细胞移植的儿童(<18 岁)的 691 个连续收集的粪便样本进行了 shotgun 宏基因组测序。我们评估了需氧(头孢吡肟、万古霉素、氟喹诺酮类、氨基糖苷类、大环内酯类和磺胺甲恶唑)和厌氧(哌拉西林他唑巴坦、碳青霉烯类、甲硝唑和克林霉素)抗生素暴露对肠道微生物组和耐药组多样性和组成的影响。我们鉴定了 372 个独特的抗生素耐药基因(ARGs);最常见的 ARGs 编码对四环素(=88)、β-内酰胺类(=84)和氟喹诺酮类(=79)的耐药性。需氧和厌氧抗生素暴露均与细菌种类数量减少(需氧,β=0.71,95%CI:0.64,0.79;厌氧,β=0.66,95%CI:0.53,0.82)和肠道宏基因组中独特的 ARG 数量减少有关(需氧,β=0.81,95%CI:0.74,0.90;厌氧,β=0.73,95%CI:0.61,0.88)。然而,只有包含厌氧活性的抗生素方案与新 ARG 的获得增加(厌氧,β=1.50;95%CI:1.12,2.01)和肠道耐药组中 ARG 的相对丰度增加相关(厌氧,β=1.62;95%CI:1.15,2.27)。特定的抗生素暴露与个别抗生素类别 ARG 的数量和丰度的变化有关。我们的研究结果详细说明了抗生素对肠道微生物组和耐药组的影响,并表明厌氧抗生素特别有可能促进抗生素耐药菌的获得和扩张。