College of Information Science and Engineering, Hunan Normal University, Changsha 410081, PR China.
College of Information Science and Engineering, Hunan Normal University, Changsha 410081, PR China.
Neural Netw. 2024 Jun;174:106268. doi: 10.1016/j.neunet.2024.106268. Epub 2024 Mar 26.
Episodic memory, as a type of long-term memory (LTM), is used to learn and store the unique personal experience. Based on the episodic memory biological mechanism, this paper proposes a bionic episodic memory memristive neural network circuit. The proposed memristive neural network circuit includes a neocortical module, a parahippocampal module and a hippocampus module. The neocortical module with the two paths structure is used to receive the sensory signal, and is also used to separate and transmit the spatial information and the non-spatial information involved in the sensory signal. The parahippocampal module is composed of the parahippocampal cortex-MEA and the perirhinal cortex-LEA, which receives the two types of information from the neocortical module respectively. As the last module, the hippocampus module receives and integrates the output information of the parahippocampal module as well as generates the corresponding episodic memory. Meanwhile, the specific scenario information with the certain temporal signal from the generated episodic memory is also extracted by the hippocampus module. The simulation results in PSPICE show that the proposed memristive neural network circuit can generate the various episodic memories and extract the specific scenario information successfully. By configuring the memristor parameters, the proposed bionic episodic memory memristive neural network circuit can be applied to the hurricane category prediction, which verifies the feasibility of this work.
情景记忆作为一种长时记忆(LTM),用于学习和存储独特的个人经历。基于情景记忆的生物学机制,本文提出了一种仿生情景记忆忆阻神经网络电路。所提出的忆阻神经网络电路包括新皮层模块、海马旁回模块和海马体模块。具有双路径结构的新皮层模块用于接收感觉信号,还用于分离和传输感觉信号中涉及的空间信息和非空间信息。海马旁回模块由海马旁回皮质-MEA 和海旁回皮质-LEA 组成,分别接收来自新皮层模块的两种类型的信息。作为最后一个模块,海马体模块接收并整合海马旁回模块的输出信息,并生成相应的情景记忆。同时,从生成的情景记忆中提取具有特定时间信号的特定场景信息。PSPICE 中的仿真结果表明,所提出的忆阻神经网络电路可以成功生成各种情景记忆并提取特定场景信息。通过配置忆阻器参数,所提出的仿生情景记忆忆阻神经网络电路可应用于飓风分类预测,验证了这项工作的可行性。