Suppr超能文献

用于图像分割应用的忆阻竞争型霍普菲尔德神经网络。

Memristive competitive hopfield neural network for image segmentation application.

作者信息

Xu Cong, Liao Meiling, Wang Chunhua, Sun Jingru, Lin Hairong

机构信息

College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082 China.

出版信息

Cogn Neurodyn. 2023 Aug;17(4):1061-1077. doi: 10.1007/s11571-022-09891-2. Epub 2022 Oct 1.

Abstract

Image segmentation implementation provides simplified and effective feature information of image. Neural network algorithms have made significant progress in the application of image segmentation task. However, few studies focus on the implementation of hardware circuits with high-efficiency analog calculations and parallel operations for image segmentation problem. In this paper, a memristor-based competitive Hopfield neural network circuit is proposed to deal with the image segmentation problem. In this circuit, the memristive cross array is applied to store synaptic weights and perform matrix operations. The competition module based on the Winner-take-all mechanism is composed of the competition neurons and the competition control circuit, which simplifies the energy function of the Hopfield neural network and realizes the output function. Operational amplifiers and ABM modules are used to integrate operations and process external input information, respectively. Based on these designs, the circuit can automatically implement iteration and update of data. A series of PSPICE simulations are designed to verify the image segmentation capability of this circuit. Comparative experimental results and analysis show that this circuit has effective improvements both in processing speed and segmentation accuracy compared with other methods. Moreover, the proposed circuit shows good robustness to noise and memristive variation.

摘要

图像分割实现提供了图像简化且有效的特征信息。神经网络算法在图像分割任务的应用中取得了显著进展。然而,很少有研究关注用于图像分割问题的具有高效模拟计算和并行操作的硬件电路的实现。本文提出了一种基于忆阻器的竞争型霍普菲尔德神经网络电路来处理图像分割问题。在该电路中,忆阻交叉阵列用于存储突触权重并执行矩阵运算。基于胜者全得机制的竞争模块由竞争神经元和竞争控制电路组成,它简化了霍普菲尔德神经网络的能量函数并实现了输出函数。运算放大器和ABM模块分别用于进行积分运算和处理外部输入信息。基于这些设计,该电路能够自动实现数据的迭代和更新。设计了一系列PSPICE仿真来验证该电路的图像分割能力。对比实验结果及分析表明,与其他方法相比,该电路在处理速度和分割精度方面均有有效提升。此外,所提出的电路对噪声和忆阻器变化表现出良好的鲁棒性。

相似文献

4
Multidirectional Associative Memory Neural Network Circuit Based on Memristor.基于忆阻器的多维联想记忆神经网络电路。
IEEE Trans Biomed Circuits Syst. 2023 Jun;17(3):433-445. doi: 10.1109/TBCAS.2023.3276077. Epub 2023 Jul 12.
9
A Memristive Multilayer Cellular Neural Network With Applications to Image Processing.忆阻型多层细胞神经网络及其在图像处理中的应用。
IEEE Trans Neural Netw Learn Syst. 2017 Aug;28(8):1889-1901. doi: 10.1109/TNNLS.2016.2552640. Epub 2016 May 13.

本文引用的文献

3
The Design of Memristive Circuit for Affective Multi-Associative Learning.忆阻电路设计用于情感多联想学习。
IEEE Trans Biomed Circuits Syst. 2020 Apr;14(2):173-185. doi: 10.1109/TBCAS.2019.2961569. Epub 2020 Jan 9.
6
Memristive crossbar arrays for brain-inspired computing.忆阻器交叉阵列用于脑启发计算。
Nat Mater. 2019 Apr;18(4):309-323. doi: 10.1038/s41563-019-0291-x. Epub 2019 Mar 20.
7
CE-Net: Context Encoder Network for 2D Medical Image Segmentation.CE-Net:用于二维医学图像分割的上下文编码器网络。
IEEE Trans Med Imaging. 2019 Oct;38(10):2281-2292. doi: 10.1109/TMI.2019.2903562. Epub 2019 Mar 7.
8
Sparse coding with memristor networks.基于忆阻器网络的稀疏编码
Nat Nanotechnol. 2017 Aug;12(8):784-789. doi: 10.1038/nnano.2017.83. Epub 2017 May 22.
10
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.SegNet:一种用于图像分割的深度卷积编解码器架构。
IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615. Epub 2017 Jan 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验