Suppr超能文献

使用人工智能进行超声心动图检测局部壁运动异常与人类读者相比。

Echocardiographic Detection of Regional Wall Motion Abnormalities Using Artificial Intelligence Compared to Human Readers.

机构信息

University of Chicago Medical Center, Chicago, Illinois.

Philips Healthcare, Cambridge, Massachusetts.

出版信息

J Am Soc Echocardiogr. 2024 Jul;37(7):655-663. doi: 10.1016/j.echo.2024.03.017. Epub 2024 Mar 30.

Abstract

BACKGROUND

Although regional wall motion abnormality (RWMA) detection is foundational to transthoracic echocardiography, current methods are prone to interobserver variability. We aimed to develop a deep learning (DL) model for RWMA assessment and compare it to expert and novice readers.

METHODS

We used 15,746 transthoracic echocardiography studies-including 25,529 apical videos-which were split into training, validation, and test datasets. A convolutional neural network was trained and validated using apical 2-, 3-, and 4-chamber videos to predict the presence of RWMA in 7 regions defined by coronary perfusion territories, using the ground truth derived from clinical transthoracic echocardiography reports. Within the test cohort, DL model accuracy was compared to 6 expert and 3 novice readers using F1 score evaluation, with the ground truth of RWMA defined by expert readers. Significance between the DL model and novices was assessed using the permutation test.

RESULTS

Within the test cohort, the DL model accurately identified any RWMA with an area under the curve of 0.96 (0.92-0.98). The mean F1 scores of the experts and the DL model were numerically similar for 6 of 7 regions: anterior (86 vs 84), anterolateral (80 vs 74), inferolateral (83 vs 87), inferoseptal (86 vs 86), apical (88 vs 87), inferior (79 vs 81), and any RWMA (90 vs 94), respectively, while in the anteroseptal region, the F1 score of the DL model was lower than the experts (75 vs 89). Using F1 scores, the DL model outperformed both novices 1 (P = .002) and 2 (P = .02) for the detection of any RWMA.

CONCLUSIONS

Deep learning provides accurate detection of RWMA, which was comparable to experts and outperformed a majority of novices. Deep learning may improve the efficiency of RWMA assessment and serve as a teaching tool for novices.

摘要

背景

尽管区域性壁运动异常(RWMA)检测是经胸超声心动图的基础,但目前的方法容易受到观察者间的变异性影响。我们旨在开发一种用于 RWMA 评估的深度学习(DL)模型,并将其与专家和新手读者进行比较。

方法

我们使用了 15746 份经胸超声心动图研究,包括 25529 个心尖视频,这些研究被分为训练、验证和测试数据集。使用心尖 2、3 和 4 腔视频训练和验证卷积神经网络,以预测 7 个由冠状动脉灌注区域定义的区域中 RWMA 的存在,使用来自临床经胸超声心动图报告的真实 RWMA 来定义 ground truth。在测试队列中,使用 F1 评分评估比较了 DL 模型与 6 名专家和 3 名新手读者的准确性,RWMA 的 ground truth 由专家读者定义。使用置换检验评估 DL 模型与新手之间的差异。

结果

在测试队列中,DL 模型能够准确识别任何 RWMA,曲线下面积为 0.96(0.92-0.98)。在 7 个区域中的 6 个区域中,专家和 DL 模型的平均 F1 评分数值上相似:前壁(86 对 84)、前侧壁(80 对 74)、下侧壁(83 对 87)、下间隔(86 对 86)、心尖(88 对 87)、下壁(79 对 81)和任何 RWMA(90 对 94),而在前间隔区域,DL 模型的 F1 评分低于专家(75 对 89)。使用 F1 评分,DL 模型在检测任何 RWMA 方面均优于新手 1(P=0.002)和新手 2(P=0.02)。

结论

深度学习提供了 RWMA 的准确检测,其性能与专家相当,优于大多数新手。深度学习可能会提高 RWMA 评估的效率,并成为新手的教学工具。

相似文献

6
Interpretation of SPECT wall motion with deep learning.基于深度学习的单光子发射计算机断层显像心肌壁运动分析
J Nucl Cardiol. 2024 Jul;37:101881. doi: 10.1016/j.nuclcard.2024.101881. Epub 2024 May 7.

引用本文的文献

本文引用的文献

6
Applications of artificial intelligence in cardiovascular imaging.人工智能在心血管成像中的应用。
Nat Rev Cardiol. 2021 Aug;18(8):600-609. doi: 10.1038/s41569-021-00527-2. Epub 2021 Mar 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验