Baggiano Andrea, Mushtaq Saima, Fusini Laura, Muratori Manuela, Pontone Gianluca, Pepi Mauro
Centro Cardiologico Monzino IRCCS, Milan, Italy.
Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
J Cardiovasc Echogr. 2025 Apr-Jun;35(2):97-107. doi: 10.4103/jcecho.jcecho_62_25. Epub 2025 Jul 30.
Artificial intelligence (AI) is transforming cardiovascular imaging (CVI), enhancing accuracy, efficiency, and diagnostic capability across echocardiography (Echo), cardiac computed tomography (CCT), and cardiac magnetic resonance (CMR). In Echo, AI improves image acquisition, segmentation, quantification of chamber function, and detection of wall motion abnormalities, supporting diagnosis and prognosis in various diseases. Automated two-dimensional and three-dimensional (3D) analysis allows rapid, reproducible assessments of ventricular volumes and EF. In valvular heart disease, AI assists in measurement, procedural planning, and integration with 3D printing. CCT benefits from AI at every workflow stage, from image acquisition to disease assessment. AI optimizes scanning protocols, reduces radiation exposure, and enhances coronary artery calcium scoring, plaque analysis, and ischemia evaluation. Algorithms enable rapid segmentation and functional assessment, while ongoing studies support its utility in risk prediction and plaque characterization. In CMR, AI accelerates acquisition, reduces artifacts, and automates segmentation and tissue characterization. Deep learning (DL) models accurately detect fibrosis, scar, and functional parameters, positively influencing prognosis prediction in every cardiac disease. AI-driven tools also streamline report generation, enhance Telemedicine workflow, and guide less experienced users in image acquisition. Despite these advances, challenges remain. Robust and diverse datasets, explainable AI models, regulatory approvals, and ethical considerations are critical for safe and widespread adoption. AI's "black box" nature hinders clinician trust, making interpretability essential. As these barriers are addressed, AI is expected to become an essential tool in every aspect of CVI, enabling personalized medicine, improving patient care, and optimizing clinical workflows in the coming decades.
人工智能(AI)正在改变心血管成像(CVI),提高超声心动图(Echo)、心脏计算机断层扫描(CCT)和心脏磁共振成像(CMR)的准确性、效率和诊断能力。在超声心动图中,人工智能改善图像采集、分割、心腔功能量化以及壁运动异常检测,支持各种疾病的诊断和预后评估。自动化二维和三维(3D)分析可对心室容积和射血分数进行快速、可重复的评估。在瓣膜性心脏病中,人工智能有助于测量、手术规划以及与3D打印的整合。CCT在从图像采集到疾病评估的每个工作流程阶段都受益于人工智能。人工智能优化扫描方案,减少辐射暴露,并增强冠状动脉钙化评分、斑块分析和缺血评估。算法实现快速分割和功能评估,同时正在进行的研究支持其在风险预测和斑块特征描述中的应用。在CMR中,人工智能加快采集速度,减少伪影,并自动进行分割和组织特征描述。深度学习(DL)模型能准确检测纤维化、瘢痕和功能参数,对每种心脏病的预后预测产生积极影响。人工智能驱动的工具还简化报告生成,增强远程医疗工作流程,并在图像采集方面指导经验不足的用户。尽管取得了这些进展,但挑战依然存在。强大且多样的数据集、可解释的人工智能模型、监管批准以及伦理考量对于安全广泛采用至关重要。人工智能的“黑匣子”性质阻碍了临床医生的信任,因此可解释性至关重要。随着这些障碍得到解决,预计人工智能将成为CVI各个方面的重要工具,在未来几十年实现个性化医疗、改善患者护理并优化临床工作流程。