Meng Jinying, Cheng Chuanqi, Wang Yuting, Yu Yifu, Zhang Bin
Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
J Am Chem Soc. 2024 Apr 10;146(14):10044-10051. doi: 10.1021/jacs.4c00898. Epub 2024 Apr 1.
The electrochemical NO reduction reaction (NORR) is a promising approach for both nitrogen cycle regulation and ammonia synthesis. Due to the relatively low concentration of the NO source and poor solubility of NO in solution, mass transfer limitation is a serious but easily overlooked issue. In this work, porous carbon-supported ultrafine Cu clusters grown on Cu nanowire arrays (defined as Cu@Cu/C NWAs) are prepared for low-concentration NORR. A high Faradaic efficiency (93.0%) and yield rate (1180.5 μg h cm) of ammonia are realized on Cu@Cu/C NWAs at -0.1 V vs a reversible hydrogen electrode (RHE), which are far superior to those of Cu NWAs and other reported performances under similar conditions. The construction of a porous carbon support can effectively decrease the NO diffusion kinetics and promote NO coverage for subsequent highly effective conversion. Moreover, the favorable metal-support interaction between ultrafine Cu clusters and carbon support enhances the adsorption of NO and decreases the barrier for *HNO formation in comparison with that of pure Cu NWAs. Overall, the whole NORR can be fully strengthened on Cu@Cu/C NWAs at low NO concentrations.
电化学一氧化氮还原反应(NORR)对于氮循环调节和氨合成而言都是一种很有前景的方法。由于一氧化氮源的浓度相对较低且一氧化氮在溶液中的溶解度较差,传质限制是一个严重但容易被忽视的问题。在这项工作中,制备了在铜纳米线阵列上生长的多孔碳负载超细铜簇(定义为Cu@Cu/C NWAs)用于低浓度NORR。在相对于可逆氢电极(RHE)为-0.1 V的条件下,Cu@Cu/C NWAs实现了较高的法拉第效率(93.0%)和氨产率(1180.5 μg h cm),这远远优于铜纳米线阵列以及在类似条件下其他已报道的性能。多孔碳载体的构建能够有效降低一氧化氮的扩散动力学,并促进一氧化氮的覆盖以实现后续的高效转化。此外,与纯铜纳米线阵列相比,超细铜簇与碳载体之间良好的金属-载体相互作用增强了一氧化氮的吸附,并降低了*HNO形成的势垒。总体而言,在低一氧化氮浓度下,整个NORR在Cu@Cu/C NWAs上能够得到充分强化。