Suppr超能文献

硫介导的界面质子定向转移促进双位点催化剂上一氧化氮电催化还原为氨

Sulfur Mediated Interfacial Proton-Directed Transfer Boosts Electrocatalytic Nitric Oxide Reduction to Ammonia over Dual-Site Catalysts.

作者信息

Wang Zhenlin, Duan Haiyan, Qu Wenqiang, Han Donglin, Li Xingchi, Zhu Li, Jiang Xuan, Cheng Danhong, Shen Yongjie, Xie Ming, Cortes Emiliano, Zhang Dengsong

机构信息

International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P.R. China.

Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.

出版信息

Angew Chem Int Ed Engl. 2025 Aug 25;64(35):e202511398. doi: 10.1002/anie.202511398. Epub 2025 Jul 9.

Abstract

Electrocatalytic nitric oxide reduction reaction (NORR) for ammonia (NH) synthesis represents a sustainable strategy that simultaneously realizes the nitrogen cycle and resource integration. The key issue hindering the NORR efficiency is accelerating proton (*H) transfer to facilitate NO hydrogenation while inhibiting the hydrogen evolution reaction (HER). Herein, we demonstrate an interface-engineered sulfur-mediated Cu@Co electrocatalyst (S-Cu@Co/C) that boosts NORR performance through dual modulation of electronic structure and proton transfer on active sites. A comprehensive program of experimental and theoretical calculations was employed to discover that sulfur incorporation induces electron redistribution in the Cu-Co interface, creating electron-rich sulfur and electron-deficient metals. This electronic configuration synergistically enhances NO adsorption on Cu sites and promotes water dissociation on Co sites. More critically, sulfur could direct the rapid transfer of *H from Co to Cu sites, thereby accelerating the NO hydrogenation and suppressing HER. Consequently, S-Cu@Co/C achieves an NH yield rate of 655.3 µmol h cm in a flow cell and a Faradaic efficiency of 92.4% in an H-cell. Remarkably, the catalyst could maintain continuous electrolysis tests and steady NH yield up to 100 h. This work provides innovative insights into the fabrication of efficient electrocatalysts via heteroatom-mediated interfacial engineering strategies.

摘要

用于合成氨(NH₃)的电催化一氧化氮还原反应(NORR)是一种可持续的策略,可同时实现氮循环和资源整合。阻碍NORR效率的关键问题是加速质子(H⁺)转移以促进NO氢化,同时抑制析氢反应(HER)。在此,我们展示了一种界面工程化的硫介导的Cu@Co电催化剂(S-Cu@Co/C),它通过对活性位点的电子结构和质子转移进行双重调制来提高NORR性能。采用了全面的实验和理论计算方案来发现,硫的掺入在Cu-Co界面诱导电子重新分布,产生富电子的硫和缺电子的金属。这种电子构型协同增强了NO在Cu位点上的吸附,并促进了Co位点上的水离解。更关键的是,硫可以引导H⁺从Co快速转移到Cu位点,从而加速NO氢化并抑制HER。因此,S-Cu@Co/C在流动池中实现了655.3 μmol h⁻¹ cm⁻²的NH₃产率,在H型电解池中实现了92.4%的法拉第效率。值得注意的是,该催化剂可以维持长达100小时的连续电解测试和稳定的NH₃产率。这项工作通过杂原子介导的界面工程策略为高效电催化剂的制备提供了创新见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e59a/12377428/8de1c93e0656/ANIE-64-e202511398-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验