Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan.
Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan.
mSystems. 2024 May 16;9(5):e0140523. doi: 10.1128/msystems.01405-23. Epub 2024 Apr 1.
The gut microbiome affects the health status of the host through complex interactions with the host's intestinal wall. These host-microbiome interactions may spatially vary along the physical and chemical environment of the intestine, but these changes remain unknown. This study investigated these intricate relationships through a gene co-expression network analysis based on dual transcriptome profiling of different intestinal sites-cecum, transverse colon, and rectum-of the primate common marmoset. We proposed a gene module extraction algorithm based on the graph theory to find tightly interacting gene modules of the host and the microbiome from a vast co-expression network. The 27 gene modules identified by this method, which include both host and microbiome genes, not only produced results consistent with previous studies regarding the host-microbiome relationships, but also provided new insights into microbiome genes acting as potential mediators in host-microbiome interplays. Specifically, we discovered associations between the host gene , a cancer marker, and polysaccharide degradation-related genes ( and ) coded by , as well as relationships between host B cell-specific genes (, , , and ) and a tryptophan synthesis gene () coded by . Furthermore, our proposed module extraction algorithm surpassed existing approaches by successfully defining more functionally related gene modules, providing insights for understanding the complex relationship between the host and the microbiome.IMPORTANCEWe unveiled the intricate dynamics of the host-microbiome interactions along the colon by identifying closely interacting gene modules from a vast gene co-expression network, constructed based on simultaneous profiling of both host and microbiome transcriptomes. Our proposed gene module extraction algorithm, designed to interpret inter-species interactions, enabled the identification of functionally related gene modules encompassing both host and microbiome genes, which was challenging with conventional modularity maximization algorithms. Through these identified gene modules, we discerned previously unrecognized bacterial genes that potentially mediate in known relationships between host genes and specific bacterial species. Our findings underscore the spatial variations in host-microbiome interactions along the colon, rather than displaying a uniform pattern throughout the colon.
肠道微生物组通过与宿主肠道壁的复杂相互作用影响宿主的健康状况。这些宿主-微生物组相互作用可能会沿着肠道的物理和化学环境在空间上发生变化,但这些变化尚不清楚。本研究通过对灵长类普通狨猴不同肠道部位(盲肠、横结肠和直肠)的双转录组谱进行基因共表达网络分析,研究了这些复杂的关系。我们提出了一种基于图论的基因模块提取算法,从庞大的共表达网络中找到宿主和微生物组紧密相互作用的基因模块。该方法确定的 27 个基因模块,包括宿主和微生物组基因,不仅产生了与宿主-微生物组关系的先前研究一致的结果,而且还提供了微生物组基因作为宿主-微生物组相互作用潜在介质的新见解。具体而言,我们发现宿主基因 与多糖降解相关基因(和)编码的 之间存在关联,以及宿主 B 细胞特异性基因(、、、和)与色氨酸合成基因()编码的 之间存在关联。此外,我们提出的模块提取算法通过成功定义更多功能相关的基因模块,超越了现有方法,为理解宿主和微生物组之间的复杂关系提供了新的见解。
我们通过从基于宿主和微生物组转录组同时分析构建的庞大基因共表达网络中识别紧密相互作用的基因模块,揭示了沿结肠的宿主-微生物组相互作用的复杂动态。我们提出的基因模块提取算法旨在解释种间相互作用,能够识别包含宿主和微生物组基因的功能相关基因模块,这是传统模块化最大化算法所具有挑战性的。通过这些鉴定的基因模块,我们发现了以前未被识别的细菌基因,这些基因可能介导已知的宿主基因与特定细菌物种之间的关系。我们的研究结果强调了宿主-微生物组相互作用在结肠上的空间变化,而不是在整个结肠上呈现出一致的模式。