Suppr超能文献

宿主遗传学和饮食对单个人群队列中人类肠道微生物群和疾病发病的综合影响。

Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort.

机构信息

Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.

School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia.

出版信息

Nat Genet. 2022 Feb;54(2):134-142. doi: 10.1038/s41588-021-00991-z. Epub 2022 Feb 3.

Abstract

Human genetic variation affects the gut microbiota through a complex combination of environmental and host factors. Here we characterize genetic variations associated with microbial abundances in a single large-scale population-based cohort of 5,959 genotyped individuals with matched gut microbial metagenomes, and dietary and health records (prevalent and follow-up). We identified 567 independent SNP-taxon associations. Variants at the LCT locus associated with Bifidobacterium and other taxa, but they differed according to dairy intake. Furthermore, levels of Faecalicatena lactaris associated with ABO, and suggested preferential utilization of secreted blood antigens as energy source in the gut. Enterococcus faecalis levels associated with variants in the MED13L locus, which has been linked to colorectal cancer. Mendelian randomization analysis indicated a potential causal effect of Morganella on major depressive disorder, consistent with observational incident disease analysis. Overall, we identify and characterize the intricate nature of host-microbiota interactions and their association with disease.

摘要

人类遗传变异通过环境和宿主因素的复杂组合影响肠道微生物群。在这里,我们在一个包含 5959 名个体的大型基于人群的队列中对与微生物丰度相关的遗传变异进行了特征描述,这些个体具有匹配的肠道微生物宏基因组、饮食和健康记录(现患和随访)。我们鉴定出了 567 个独立的 SNP-分类群关联。位于 LCT 基因座的变异与双歧杆菌和其他分类群相关,但它们因乳制品摄入而异。此外,Faecalicatena lactaris 的水平与 ABO 相关,并提示在肠道中优先利用分泌的血液抗原作为能量来源。肠球菌粪肠球菌的水平与 MED13L 基因座的变异相关,该基因座已与结直肠癌相关。孟德尔随机化分析表明,Morganella 对重度抑郁症有潜在的因果影响,这与观察性疾病发病分析一致。总体而言,我们鉴定并描述了宿主-微生物群相互作用的复杂性质及其与疾病的关联。

相似文献

1
Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort.
Nat Genet. 2022 Feb;54(2):134-142. doi: 10.1038/s41588-021-00991-z. Epub 2022 Feb 3.
2
Effect of host genetics on the gut microbiome in 7,738 participants of the Dutch Microbiome Project.
Nat Genet. 2022 Feb;54(2):143-151. doi: 10.1038/s41588-021-00992-y. Epub 2022 Feb 3.
4
Challenges and future directions for studying effects of host genetics on the gut microbiome.
Nat Genet. 2022 Feb;54(2):100-106. doi: 10.1038/s41588-021-00983-z. Epub 2022 Feb 3.
5
Large-scale association analyses identify host factors influencing human gut microbiome composition.
Nat Genet. 2021 Feb;53(2):156-165. doi: 10.1038/s41588-020-00763-1. Epub 2021 Jan 18.
7
Genome-wide association study in 8,956 German individuals identifies influence of ABO histo-blood groups on gut microbiome.
Nat Genet. 2021 Feb;53(2):147-155. doi: 10.1038/s41588-020-00747-1. Epub 2021 Jan 18.
8
Gut microbiome and major depressive disorder: insights from two-sample Mendelian randomization.
BMC Psychiatry. 2024 Jul 8;24(1):493. doi: 10.1186/s12888-024-05942-6.
9
Genome-wide associations of human gut microbiome variation and implications for causal inference analyses.
Nat Microbiol. 2020 Sep;5(9):1079-1087. doi: 10.1038/s41564-020-0743-8. Epub 2020 Jun 22.

引用本文的文献

1
Gut fungi are associated with human genetic variation and disease risk.
PLoS Biol. 2025 Sep 2;23(9):e3003339. doi: 10.1371/journal.pbio.3003339. eCollection 2025 Sep.
3
The emerging role of the gut microbiome in depression: implications for precision medicine.
Mol Psychiatry. 2025 Aug 27. doi: 10.1038/s41380-025-03191-x.
5
Gut microbiota and breast cancer risk: a Mendelian randomization study stratified by ER status.
Discov Oncol. 2025 Aug 11;16(1):1526. doi: 10.1007/s12672-025-03379-1.
6
The role of gut microbiota in insulin resistance: recent progress.
Front Microbiol. 2025 Jul 25;16:1633029. doi: 10.3389/fmicb.2025.1633029. eCollection 2025.
10
Gut microbiota and protein-to-protein ratios in NAFLD: insights from Mendelian randomization and murine studies.
Front Nutr. 2025 Jul 18;12:1597390. doi: 10.3389/fnut.2025.1597390. eCollection 2025.

本文引用的文献

1
Taxonomic signatures of cause-specific mortality risk in human gut microbiome.
Nat Commun. 2021 May 11;12(1):2671. doi: 10.1038/s41467-021-22962-y.
2
Trans-ancestry analysis reveals genetic and nongenetic associations with COVID-19 susceptibility and severity.
Nat Genet. 2021 Jun;53(6):801-808. doi: 10.1038/s41588-021-00854-7. Epub 2021 Apr 22.
3
Links between gut microbiome composition and fatty liver disease in a large population sample.
Gut Microbes. 2021 Jan-Dec;13(1):1-22. doi: 10.1080/19490976.2021.1888673.
5
Large-scale association analyses identify host factors influencing human gut microbiome composition.
Nat Genet. 2021 Feb;53(2):156-165. doi: 10.1038/s41588-020-00763-1. Epub 2021 Jan 18.
6
Genome-wide association study in 8,956 German individuals identifies influence of ABO histo-blood groups on gut microbiome.
Nat Genet. 2021 Feb;53(2):147-155. doi: 10.1038/s41588-020-00747-1. Epub 2021 Jan 18.
7
Landscapes of bacterial and metabolic signatures and their interaction in major depressive disorders.
Sci Adv. 2020 Dec 2;6(49). doi: 10.1126/sciadv.aba8555. Print 2020 Dec.
8
Blood type and the microbiome- untangling a complex relationship with lessons from pathogens.
Curr Opin Microbiol. 2020 Aug;56:59-66. doi: 10.1016/j.mib.2020.06.008. Epub 2020 Jul 11.
10
Genome-wide associations of human gut microbiome variation and implications for causal inference analyses.
Nat Microbiol. 2020 Sep;5(9):1079-1087. doi: 10.1038/s41564-020-0743-8. Epub 2020 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验