Suppr超能文献

面向协作式人机任务的以用户为中心的策略推荐系统设计

Towards the design of user-centric strategy recommendation systems for collaborative Human-AI tasks.

作者信息

Dodeja Lakshita, Tambwekar Pradyumna, Hedlund-Botti Erin, Gombolay Matthew

机构信息

School of Interactive Computing, Georgia Institute of Technology, Atlanta, 30332, GA, USA.

出版信息

Int J Hum Comput Stud. 2024 Apr;184. doi: 10.1016/j.ijhcs.2023.103216. Epub 2024 Jan 6.

Abstract

Artificial Intelligence is being employed by humans to collaboratively solve complicated tasks for search and rescue, manufacturing, etc. Efficient teamwork can be achieved by understanding user preferences and recommending different strategies for solving the particular task to humans. Prior work has focused on personalization of recommendation systems for relatively well-understood tasks in the context of e-commerce or social networks. In this paper, we seek to understand the important factors to consider while designing user-centric strategy recommendation systems for decision-making. We conducted a human-subjects experiment (n=60) for measuring the preferences of users with different personality types towards different strategy recommendation systems. We conducted our experiment across four types of strategy recommendation modalities that have been established in prior work: (1) Single strategy recommendation, (2) Multiple similar recommendations, (3) Multiple diverse recommendations, (4) All possible strategies recommendations. While these strategy recommendation schemes have been explored independently in prior work, our study is novel in that we employ all of them simultaneously and in the context of strategy recommendations, to provide us an in-depth overview of the perception of different strategy recommendation systems. We found that certain personality traits, such as conscientiousness, notably impact the preference towards a particular type of system ( 0.01). Finally, we report an interesting relationship between usability, alignment, and perceived intelligence wherein greater perceived alignment of recommendations with one's own preferences leads to higher perceived intelligence ( 0.01) and higher usability ( 0.01).

摘要

人类正在利用人工智能来协同解决搜索救援、制造等复杂任务。通过了解用户偏好并向人类推荐解决特定任务的不同策略,可以实现高效的团队合作。先前的工作主要集中在电子商务或社交网络背景下相对容易理解的任务的推荐系统个性化方面。在本文中,我们试图了解在设计以用户为中心的决策策略推荐系统时需要考虑的重要因素。我们进行了一项人体实验(n = 60),以测量不同性格类型的用户对不同策略推荐系统的偏好。我们在先前工作中确立的四种策略推荐模式下进行了实验:(1)单一策略推荐,(2)多个相似推荐,(3)多个不同推荐,(4)所有可能策略推荐。虽然这些策略推荐方案在先前的工作中是独立探索的,但我们的研究具有创新性,因为我们同时使用所有这些方案,并在策略推荐的背景下,为我们提供了对不同策略推荐系统认知的深入概述。我们发现某些人格特质,如尽责性,对特定类型系统的偏好有显著影响(p < 0.01)。最后,我们报告了可用性、一致性和感知智能之间的有趣关系,即推荐与个人偏好的更高感知一致性会导致更高的感知智能(p < 0.01)和更高的可用性(p < 0.01)。

相似文献

1
Towards the design of user-centric strategy recommendation systems for collaborative Human-AI tasks.
Int J Hum Comput Stud. 2024 Apr;184. doi: 10.1016/j.ijhcs.2023.103216. Epub 2024 Jan 6.
2
CourseQ: the impact of visual and interactive course recommendation in university environments.
Res Pract Technol Enhanc Learn. 2021;16(1):18. doi: 10.1186/s41039-021-00167-7. Epub 2021 Jun 30.
3
5
MMAgentRec, a personalized multi-modal recommendation agent with large language model.
Sci Rep. 2025 Apr 8;15(1):12062. doi: 10.1038/s41598-025-96458-w.
7
Basic principles for the development of an AI-based tool for assistive technology decision making.
Disabil Rehabil Assist Technol. 2022 Oct;17(7):778-781. doi: 10.1080/17483107.2020.1817163. Epub 2020 Dec 4.
9
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.
JBI Database System Rev Implement Rep. 2016 Apr;14(4):96-137. doi: 10.11124/JBISRIR-2016-1843.

本文引用的文献

1
Towards reconciling usability and usefulness of policy explanations for sequential decision-making systems.
Front Robot AI. 2024 Jul 22;11:1375490. doi: 10.3389/frobt.2024.1375490. eCollection 2024.
2
Artificial Intelligence in Clinical Decision Support: Challenges for Evaluating AI and Practical Implications.
Yearb Med Inform. 2019 Aug;28(1):128-134. doi: 10.1055/s-0039-1677903. Epub 2019 Apr 25.
4
Non-normal data: Is ANOVA still a valid option?
Psicothema. 2017 Nov;29(4):552-557. doi: 10.7334/psicothema2016.383.
6
The mini-IPIP scales: tiny-yet-effective measures of the Big Five factors of personality.
Psychol Assess. 2006 Jun;18(2):192-203. doi: 10.1037/1040-3590.18.2.192.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验