Magrabi Farah, Ammenwerth Elske, McNair Jytte Brender, De Keizer Nicolet F, Hyppönen Hannele, Nykänen Pirkko, Rigby Michael, Scott Philip J, Vehko Tuulikki, Wong Zoie Shui-Yee, Georgiou Andrew
Macquarie University, Australian Institute of Health Innovation, Sydney, Australia.
UMIT, University for Health Sciences, Medical Informatics and Technology, Institute of Medical Informatics, Hall in Tyrol, Austria.
Yearb Med Inform. 2019 Aug;28(1):128-134. doi: 10.1055/s-0039-1677903. Epub 2019 Apr 25.
This paper draws attention to: i) key considerations for evaluating artificial intelligence (AI) enabled clinical decision support; and ii) challenges and practical implications of AI design, development, selection, use, and ongoing surveillance.
A narrative review of existing research and evaluation approaches along with expert perspectives drawn from the International Medical Informatics Association (IMIA) Working Group on Technology Assessment and Quality Development in Health Informatics and the European Federation for Medical Informatics (EFMI) Working Group for Assessment of Health Information Systems.
There is a rich history and tradition of evaluating AI in healthcare. While evaluators can learn from past efforts, and build on best practice evaluation frameworks and methodologies, questions remain about how to evaluate the safety and effectiveness of AI that dynamically harness vast amounts of genomic, biomarker, phenotype, electronic record, and care delivery data from across health systems. This paper first provides a historical perspective about the evaluation of AI in healthcare. It then examines key challenges of evaluating AI-enabled clinical decision support during design, development, selection, use, and ongoing surveillance. Practical aspects of evaluating AI in healthcare, including approaches to evaluation and indicators to monitor AI are also discussed.
Commitment to rigorous initial and ongoing evaluation will be critical to ensuring the safe and effective integration of AI in complex sociotechnical settings. Specific enhancements that are required for the new generation of AI-enabled clinical decision support will emerge through practical application.
本文旨在关注:i)评估人工智能(AI)支持的临床决策支持的关键考量因素;ii)人工智能设计、开发、选择、使用及持续监测的挑战与实际影响。
对现有研究及评估方法进行叙述性综述,并借鉴国际医学信息学协会(IMIA)健康信息学技术评估与质量发展工作组以及欧洲医学信息学联合会(EFMI)健康信息系统评估工作组的专家观点。
在医疗保健领域评估人工智能有着丰富的历史和传统。虽然评估人员可以借鉴过去的努力,并基于最佳实践评估框架和方法,但对于如何评估动态利用来自整个卫生系统的大量基因组、生物标志物、表型、电子记录和护理交付数据的人工智能的安全性和有效性,仍存在疑问。本文首先提供了关于医疗保健领域人工智能评估的历史视角。然后探讨了在设计、开发、选择、使用和持续监测过程中评估人工智能支持的临床决策支持的关键挑战。还讨论了医疗保健领域评估人工智能的实际方面,包括评估方法和监测人工智能的指标。
致力于严格的初始评估和持续评估对于确保人工智能在复杂的社会技术环境中安全有效地集成至关重要。新一代人工智能支持的临床决策支持所需的具体改进将通过实际应用而出现。