Suppr超能文献

临床决策支持中的人工智能:评估人工智能的挑战及实际意义

Artificial Intelligence in Clinical Decision Support: Challenges for Evaluating AI and Practical Implications.

作者信息

Magrabi Farah, Ammenwerth Elske, McNair Jytte Brender, De Keizer Nicolet F, Hyppönen Hannele, Nykänen Pirkko, Rigby Michael, Scott Philip J, Vehko Tuulikki, Wong Zoie Shui-Yee, Georgiou Andrew

机构信息

Macquarie University, Australian Institute of Health Innovation, Sydney, Australia.

UMIT, University for Health Sciences, Medical Informatics and Technology, Institute of Medical Informatics, Hall in Tyrol, Austria.

出版信息

Yearb Med Inform. 2019 Aug;28(1):128-134. doi: 10.1055/s-0039-1677903. Epub 2019 Apr 25.

Abstract

OBJECTIVES

This paper draws attention to: i) key considerations for evaluating artificial intelligence (AI) enabled clinical decision support; and ii) challenges and practical implications of AI design, development, selection, use, and ongoing surveillance.

METHOD

A narrative review of existing research and evaluation approaches along with expert perspectives drawn from the International Medical Informatics Association (IMIA) Working Group on Technology Assessment and Quality Development in Health Informatics and the European Federation for Medical Informatics (EFMI) Working Group for Assessment of Health Information Systems.

RESULTS

There is a rich history and tradition of evaluating AI in healthcare. While evaluators can learn from past efforts, and build on best practice evaluation frameworks and methodologies, questions remain about how to evaluate the safety and effectiveness of AI that dynamically harness vast amounts of genomic, biomarker, phenotype, electronic record, and care delivery data from across health systems. This paper first provides a historical perspective about the evaluation of AI in healthcare. It then examines key challenges of evaluating AI-enabled clinical decision support during design, development, selection, use, and ongoing surveillance. Practical aspects of evaluating AI in healthcare, including approaches to evaluation and indicators to monitor AI are also discussed.

CONCLUSION

Commitment to rigorous initial and ongoing evaluation will be critical to ensuring the safe and effective integration of AI in complex sociotechnical settings. Specific enhancements that are required for the new generation of AI-enabled clinical decision support will emerge through practical application.

摘要

目标

本文旨在关注:i)评估人工智能(AI)支持的临床决策支持的关键考量因素;ii)人工智能设计、开发、选择、使用及持续监测的挑战与实际影响。

方法

对现有研究及评估方法进行叙述性综述,并借鉴国际医学信息学协会(IMIA)健康信息学技术评估与质量发展工作组以及欧洲医学信息学联合会(EFMI)健康信息系统评估工作组的专家观点。

结果

在医疗保健领域评估人工智能有着丰富的历史和传统。虽然评估人员可以借鉴过去的努力,并基于最佳实践评估框架和方法,但对于如何评估动态利用来自整个卫生系统的大量基因组、生物标志物、表型、电子记录和护理交付数据的人工智能的安全性和有效性,仍存在疑问。本文首先提供了关于医疗保健领域人工智能评估的历史视角。然后探讨了在设计、开发、选择、使用和持续监测过程中评估人工智能支持的临床决策支持的关键挑战。还讨论了医疗保健领域评估人工智能的实际方面,包括评估方法和监测人工智能的指标。

结论

致力于严格的初始评估和持续评估对于确保人工智能在复杂的社会技术环境中安全有效地集成至关重要。新一代人工智能支持的临床决策支持所需的具体改进将通过实际应用而出现。

相似文献

2
An Open Science Approach to Artificial Intelligence in Healthcare.医疗保健领域人工智能的开放科学方法。
Yearb Med Inform. 2019 Aug;28(1):47-51. doi: 10.1055/s-0039-1677898. Epub 2019 Apr 25.
9
Artificial Intelligence in Health Informatics: Hype or Reality?健康信息学中的人工智能:炒作还是现实?
Yearb Med Inform. 2019 Aug;28(1):3-4. doi: 10.1055/s-0039-1677951. Epub 2019 Aug 16.
10
Applying Artificial Intelligence to Address the Knowledge Gaps in Cancer Care.应用人工智能解决癌症护理中的知识空白。
Oncologist. 2019 Jun;24(6):772-782. doi: 10.1634/theoncologist.2018-0257. Epub 2018 Nov 16.

引用本文的文献

本文引用的文献

2
Artificial intelligence in healthcare.人工智能在医疗保健领域的应用。
Nat Biomed Eng. 2018 Oct;2(10):719-731. doi: 10.1038/s41551-018-0305-z. Epub 2018 Oct 10.
3
Reduced Verification of Medication Alerts Increases Prescribing Errors.减少用药提醒验证会增加处方错误。
Appl Clin Inform. 2019 Jan;10(1):66-76. doi: 10.1055/s-0038-1677009. Epub 2019 Jan 30.
5
Artificial intelligence, bias and clinical safety.人工智能、偏差与临床安全。
BMJ Qual Saf. 2019 Mar;28(3):231-237. doi: 10.1136/bmjqs-2018-008370. Epub 2019 Jan 12.
6
The fate of medicine in the time of AI.人工智能时代医学的命运。
Lancet. 2018 Dec 1;392(10162):2331-2332. doi: 10.1016/S0140-6736(18)31925-1. Epub 2018 Oct 11.
7
Framing the challenges of artificial intelligence in medicine.阐述医学领域中人工智能面临的挑战。
BMJ Qual Saf. 2019 Mar;28(3):238-241. doi: 10.1136/bmjqs-2018-008551. Epub 2018 Oct 5.
10
Automation bias in electronic prescribing.电子处方中的自动化偏倚。
BMC Med Inform Decis Mak. 2017 Mar 16;17(1):28. doi: 10.1186/s12911-017-0425-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验