Durbin Marlow M, Balzer Alex H, Reynolds John R, Ratcliff Erin L, Stingelin Natalie, Österholm Anna M
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
Chem Mater. 2024 Mar 12;36(6):2634-2641. doi: 10.1021/acs.chemmater.3c02122. eCollection 2024 Mar 26.
Mixed ionic/electronic conducting polymers are versatile systems for, e.g., energy storage, heat management (exploiting electrochromism), and biosensing, all of which require electrochemical doping, i.e., the electrochemical oxidation or reduction of their macromolecular backbones. Electrochemical doping is achieved via electro-injection of charges (i.e., electronic carriers), stabilized via migration of counterions from a supporting electrolyte. Since the choice of the polymer side-chain functionalization influences electrolyte and/or ion sorption and desorption, it in turn affects redox properties, and, thus, electrochemically induced mixed conduction. However, our understanding of how side-chain versus backbone design can increase ion flow while retaining high electronic transport remains limited. Hence, heuristic design approaches have typically been followed. Herein, we consider the redox and swelling behavior of three poly(propylenedioxythiophene) derivatives, P(ProDOT)s, substituted with different side-chain motifs, and demonstrate that passive swelling is controlled by the surface polarity of P(ProDOT) films. In contrast, active swelling under operando conditions (i.e., under an applied bias) is dictated by the local side-chain free volume on the length scale of a monomer unit. Such insights deliver important design criteria toward durable soft electrochemical systems for diverse energy and biosensing platforms and new understanding into electrochemical conditioning ("break-in") in many conducting polymers.
混合离子/电子导电聚合物是多功能体系,可用于例如能量存储、热管理(利用电致变色)和生物传感,所有这些都需要电化学掺杂,即其大分子主链的电化学氧化或还原。电化学掺杂是通过电荷(即电子载流子)的电注入实现的,电荷通过抗衡离子从支持电解质中的迁移而稳定。由于聚合物侧链功能化的选择会影响电解质和/或离子的吸附和解吸,进而影响氧化还原性质,从而影响电化学诱导的混合传导。然而,我们对侧链与主链设计如何在保持高电子传输的同时增加离子流动的理解仍然有限。因此,通常采用启发式设计方法。在此,我们考虑了三种用不同侧链基序取代的聚(丙二醇二噻吩)衍生物P(ProDOT)的氧化还原和溶胀行为,并证明被动溶胀受P(ProDOT)薄膜的表面极性控制。相比之下,在操作条件下(即在施加偏压下)的主动溶胀由单体单元长度尺度上的局部侧链自由体积决定。这些见解为用于各种能量和生物传感平台的耐用软电化学系统提供了重要的设计标准,并为许多导电聚合物中的电化学调节(“磨合”)提供了新的理解。