Suppr超能文献

侧链自由体积对聚(亚丙基二氧噻吩)电化学行为的作用

Role of Side-Chain Free Volume on the Electrochemical Behavior of Poly(propylenedioxythiophenes).

作者信息

Durbin Marlow M, Balzer Alex H, Reynolds John R, Ratcliff Erin L, Stingelin Natalie, Österholm Anna M

机构信息

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

出版信息

Chem Mater. 2024 Mar 12;36(6):2634-2641. doi: 10.1021/acs.chemmater.3c02122. eCollection 2024 Mar 26.

Abstract

Mixed ionic/electronic conducting polymers are versatile systems for, e.g., energy storage, heat management (exploiting electrochromism), and biosensing, all of which require electrochemical doping, i.e., the electrochemical oxidation or reduction of their macromolecular backbones. Electrochemical doping is achieved via electro-injection of charges (i.e., electronic carriers), stabilized via migration of counterions from a supporting electrolyte. Since the choice of the polymer side-chain functionalization influences electrolyte and/or ion sorption and desorption, it in turn affects redox properties, and, thus, electrochemically induced mixed conduction. However, our understanding of how side-chain versus backbone design can increase ion flow while retaining high electronic transport remains limited. Hence, heuristic design approaches have typically been followed. Herein, we consider the redox and swelling behavior of three poly(propylenedioxythiophene) derivatives, P(ProDOT)s, substituted with different side-chain motifs, and demonstrate that passive swelling is controlled by the surface polarity of P(ProDOT) films. In contrast, active swelling under operando conditions (i.e., under an applied bias) is dictated by the local side-chain free volume on the length scale of a monomer unit. Such insights deliver important design criteria toward durable soft electrochemical systems for diverse energy and biosensing platforms and new understanding into electrochemical conditioning ("break-in") in many conducting polymers.

摘要

混合离子/电子导电聚合物是多功能体系,可用于例如能量存储、热管理(利用电致变色)和生物传感,所有这些都需要电化学掺杂,即其大分子主链的电化学氧化或还原。电化学掺杂是通过电荷(即电子载流子)的电注入实现的,电荷通过抗衡离子从支持电解质中的迁移而稳定。由于聚合物侧链功能化的选择会影响电解质和/或离子的吸附和解吸,进而影响氧化还原性质,从而影响电化学诱导的混合传导。然而,我们对侧链与主链设计如何在保持高电子传输的同时增加离子流动的理解仍然有限。因此,通常采用启发式设计方法。在此,我们考虑了三种用不同侧链基序取代的聚(丙二醇二噻吩)衍生物P(ProDOT)的氧化还原和溶胀行为,并证明被动溶胀受P(ProDOT)薄膜的表面极性控制。相比之下,在操作条件下(即在施加偏压下)的主动溶胀由单体单元长度尺度上的局部侧链自由体积决定。这些见解为用于各种能量和生物传感平台的耐用软电化学系统提供了重要的设计标准,并为许多导电聚合物中的电化学调节(“磨合”)提供了新的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/385c/10976628/b39e456583f8/cm3c02122_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验