Caziot B, Cooper B, Harwood M R, McPeek R M
Graduate Center for Vision Research, Department of Biological and Vision Sciences, SUNY College of Optometry, 33 West 42 Street, New York, NY, 10036, USA.
Neurophysics Department, Philipps-Universität Marburg, 8A Karl-von-Frisch-Straße, 35043 Marburg, Germany.
bioRxiv. 2024 Mar 13:2024.03.09.584223. doi: 10.1101/2024.03.09.584223.
Our vision is best only in the center of our gaze, and we use saccadic eye movements to direct gaze to objects and features of interest. We make more than 180,000 saccades per day, and accurate and efficient saccades are crucial for most visuo-motor tasks. Saccades are typically studied using small point stimuli, despite the fact that most real-world visual scenes are composed of extended objects. Recent studies in humans have shown that the initiation latency of saccades is strongly dependent on the size of the target (the "size-latency effect"), perhaps reflecting a tradeoff between the cost of making a saccade to a target and the expected information gain that would result. Here, we investigate the neuronal correlates of the size-latency effect in the macaque superior colliculus. We analyzed the latency variations of saccades to different size targets within a stochastic accumulator model framework. The model predicted a steeper increase in activity for smaller targets compared to larger ones. Surprisingly, the model also predicted an increase in saccade initiation threshold for larger targets. We found that the activity of intermediate-layer SC visuomotor neurons is in close agreement with the model predictions. We also found evidence that these effects may be a consequence of the visual responses of SC neurons to targets of different sizes. These results shed new light on the sources of delay within the saccadic system, a system that we heavily depend upon in the performance of most visuo-motor tasks.
我们的视觉只有在注视中心时才最为敏锐,我们通过快速眼动将目光指向感兴趣的物体和特征。我们每天会进行超过18万次快速眼动,准确而高效的快速眼动对于大多数视觉运动任务至关重要。尽管大多数现实世界的视觉场景是由扩展物体组成的,但快速眼动通常使用小的点刺激进行研究。最近对人类的研究表明,快速眼动的起始潜伏期强烈依赖于目标的大小(“大小-潜伏期效应”),这可能反映了向目标进行快速眼动的成本与预期信息增益之间的权衡。在这里,我们研究猕猴上丘中大小-潜伏期效应的神经元相关性。我们在随机累加器模型框架内分析了对不同大小目标的快速眼动潜伏期变化。该模型预测,与较大目标相比,较小目标的活动增加更为陡峭。令人惊讶的是,该模型还预测较大目标的快速眼动起始阈值会增加。我们发现,中层上丘视觉运动神经元的活动与模型预测密切一致。我们还发现证据表明,这些效应可能是上丘神经元对不同大小目标的视觉反应的结果。这些结果为快速眼动系统中的延迟来源提供了新的线索,而快速眼动系统是我们在执行大多数视觉运动任务时严重依赖的系统。