Song Xinhua, Hong Shize, Wang Jing, Zhu Xinyu, Guo Shudong, Fu Yanshu, Yang Yixuan, Yang Ming, He Wuyi, Tang Yu, Gao Binlun
School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China.
Taian Special Equipment Inspection and Research Institute, Taian 271000, China.
ACS Omega. 2024 Mar 14;9(12):14287-14296. doi: 10.1021/acsomega.3c10138. eCollection 2024 Mar 26.
The honeycomb structure demonstrates exceptional stability, efficient mechanical performance, outstanding load-bearing capacity, and energy-saving and lightweight properties, rendering it extensively employed in various fields such as industrial manufacturing, radiation protection building, aerospace engineering, and wave-absorbing stealth materials. Bionic design can enhance the performance of structures, making bionic honeycomb design valuable in engineering. This study employs a bionic optimization design based on the original honeycomb size to investigate the impact of a new composite honeycomb core structure on mechanical properties. Orthogonal experiments are conducted to explore the effect of honeycomb size on mechanical properties and determine the optimal size. Combining numerical simulation and 3D printing experiments, we examine the mechanical properties of both nano-FeO particle-distributed honeycomb structure and common structures, analyzing mechanisms behind their tensile and compressive properties.
蜂窝结构具有卓越的稳定性、高效的力学性能、出色的承载能力以及节能和轻质特性,使其广泛应用于工业制造、辐射防护建筑、航空航天工程和吸波隐身材料等各个领域。仿生设计可以提高结构的性能,使得仿生蜂窝设计在工程中具有重要价值。本研究基于原始蜂窝尺寸进行仿生优化设计,以研究新型复合蜂窝芯结构对力学性能的影响。通过正交试验探究蜂窝尺寸对力学性能的影响并确定最优尺寸。结合数值模拟和3D打印实验,我们研究了纳米FeO颗粒分布的蜂窝结构和普通结构的力学性能,分析了它们拉伸和压缩性能背后的机制。