Boateng Charles, Yang Kwangsoo, Ghoreishi Seyedeh Gol Ara, Jang Jinwoo, Jan Muhammad Tanveer, Conniff Joshua, Furht Borko, Moshfeghi Sonia, Newman David, Tappen Ruth, Zhai Jinnan, Rosseli Monica
Florida Atlantic University Boca Raton, USA.
2023 IEEE 20th Int Conf Smart Communities Improv Qual Life Using AI Robot IoT HONET (2023). 2023 Dec;2023:210-215. doi: 10.1109/honet59747.2023.10374718.
Given a GPS dataset comprising driving records captured at one-second intervals, this research addresses the challenge of Abnormal Driving Detection (ADD). The study introduces an integrated approach that leverages data preprocessing, dimensionality reduction, and clustering techniques. Speed Over Ground (SOG), Course Over Ground (COG), longitude (lon), and latitude (lat) data are aggregated into minute-level segments. We use Singular Value Decomposition (SVD) to reduce dimensionality, enabling K-means clustering to identify distinctive driving patterns. Results showcase the methodology's effectiveness in distinguishing normal from abnormal driving behaviors, offering promising insights for driver safety, insurance risk assessment, and personalized interventions.
给定一个包含以一秒间隔捕获的驾驶记录的GPS数据集,本研究旨在解决异常驾驶检测(ADD)的挑战。该研究引入了一种综合方法,该方法利用数据预处理、降维和聚类技术。对地速度(SOG)、对地航向(COG)、经度(lon)和纬度(lat)数据被聚合为分钟级片段。我们使用奇异值分解(SVD)来降低维度,使K均值聚类能够识别独特的驾驶模式。结果展示了该方法在区分正常驾驶行为和异常驾驶行为方面的有效性,为驾驶员安全、保险风险评估和个性化干预提供了有前景的见解。