Suppr超能文献

基于四叉树的深度学习驾驶员分类用于轻度认知障碍检测

Quad-tree Based Driver Classification using Deep Learning for Mild Cognitive Impairment Detection.

作者信息

Ghoreishi Seyedeh Gol Ara, Boateng Charles, Moshfeghi Sonia, Jan Muhammad Tanveer, Conniff Joshua, Yang Kwangsoo, Jang Jinwoo, Furht Borko, Newman David, Tappen Ruth, Rosselli Monica, Jackson Kelly

机构信息

Florida Atlantic University, Boca Raton, USA.

出版信息

IEEE Access. 2025;13:63129-63142. doi: 10.1109/access.2025.3558706. Epub 2025 Apr 8.

Abstract

Given GPS points on a transportation network, the goal of the Quad-tree Based Driver Classification (QBDC) problem is to identify whether drivers have Mild Cognitive Impairment (MCI). The QBDC problem is challenging due to the large volume and complexity of the data. This paper proposes a quad-tree based approach to the QBDC problem by analyzing driving patterns using a real-world dataset. We propose a geo-regional quad-tree structure to capture the spatial hierarchy of driving trajectories and introduce new driving features representation for input into a convolutional neural network (CNN) for driver classification. The experimental results demonstrate the effectiveness of the proposed algorithm, achieving an F1 score of 95% that significantly outperforms the baseline models. These results highlight the potential of geo-regional quad-tree structures to extract interpretable features and describe complex driving patterns. This approach offers significant implications for driver classification, with the potential to improve road safety and cognitive health monitoring.

摘要

给定交通网络上的GPS点,基于四叉树的驾驶员分类(QBDC)问题的目标是识别驾驶员是否患有轻度认知障碍(MCI)。由于数据量巨大且复杂,QBDC问题具有挑战性。本文通过使用真实世界数据集分析驾驶模式,提出了一种基于四叉树的QBDC问题解决方法。我们提出了一种地理区域四叉树结构来捕捉驾驶轨迹的空间层次,并引入新的驾驶特征表示,以输入到卷积神经网络(CNN)中进行驾驶员分类。实验结果证明了所提算法的有效性,F1分数达到95%,显著优于基线模型。这些结果突出了地理区域四叉树结构提取可解释特征和描述复杂驾驶模式的潜力。这种方法对驾驶员分类具有重要意义,有可能改善道路安全和认知健康监测。

相似文献

1
Quad-tree Based Driver Classification using Deep Learning for Mild Cognitive Impairment Detection.
IEEE Access. 2025;13:63129-63142. doi: 10.1109/access.2025.3558706. Epub 2025 Apr 8.
2
Spatial Deep Learning Approach to Older Driver Classification.
IEEE Access. 2024;12:191219-191230. doi: 10.1109/access.2024.3516572. Epub 2024 Dec 12.
3
CBAM VGG16: An efficient driver distraction classification using CBAM embedded VGG16 architecture.
Comput Biol Med. 2024 Sep;180:108945. doi: 10.1016/j.compbiomed.2024.108945. Epub 2024 Aug 1.
5
Unusual Driver Behavior Detection in Videos Using Deep Learning Models.
Sensors (Basel). 2022 Dec 28;23(1):311. doi: 10.3390/s23010311.
7
On-Road Behavior in Older Drivers With Mild Cognitive Impairment.
J Am Med Dir Assoc. 2021 Feb;22(2):399-405.e1. doi: 10.1016/j.jamda.2020.05.046. Epub 2020 Jul 19.
9
Anomalous Behavior Detection in Trajectory Data of Older Drivers.
2023 IEEE 20th Int Conf Smart Communities Improv Qual Life Using AI Robot IoT HONET (2023). 2023 Dec;2023:146-151. doi: 10.1109/HONET59747.2023.10374878.
10

本文引用的文献

1
Spatial Deep Learning Approach to Older Driver Classification.
IEEE Access. 2024;12:191219-191230. doi: 10.1109/access.2024.3516572. Epub 2024 Dec 12.
2
Detection of mild cognitive impairment using various types of gait tests and machine learning.
Front Neurol. 2024 Jul 11;15:1354092. doi: 10.3389/fneur.2024.1354092. eCollection 2024.
3
Objective estimation of m-CTSIB balance test scores using wearable sensors and machine learning.
Front Digit Health. 2024 Apr 19;6:1366176. doi: 10.3389/fdgth.2024.1366176. eCollection 2024.
4
Anomalous Behavior Detection in Trajectory Data of Older Drivers.
2023 IEEE 20th Int Conf Smart Communities Improv Qual Life Using AI Robot IoT HONET (2023). 2023 Dec;2023:146-151. doi: 10.1109/HONET59747.2023.10374878.
5
In-vehicle Sensing and Data Analysis for Older Drivers with Mild Cognitive Impairment.
2023 IEEE 20th Int Conf Smart Communities Improv Qual Life Using AI Robot IoT HONET (2023). 2023 Dec;2023:140-145. doi: 10.1109/HONET59747.2023.10374639.
6
Abnormal Driving Detection using GPS Data.
2023 IEEE 20th Int Conf Smart Communities Improv Qual Life Using AI Robot IoT HONET (2023). 2023 Dec;2023:210-215. doi: 10.1109/honet59747.2023.10374718.
8
Optical Imaging Demonstrates Tissue-Specific Metabolic Perturbations in Mblac1 Knockout Mice.
IEEE J Transl Eng Health Med. 2024 Jan 15;12:298-305. doi: 10.1109/JTEHM.2024.3355962. eCollection 2024.
9
Study protocol for "In-vehicle sensors to detect changes in cognition of older drivers".
BMC Geriatr. 2023 Dec 14;23(1):854. doi: 10.1186/s12877-023-04550-5.
10
Optical Imaging Reveals Liver Metabolic Perturbations in Mblac1 Knockout Mice.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10341032.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验