Hashikawa Yoshifumi, Sadai Shumpei, Murata Yasujiro
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
ACS Phys Chem Au. 2024 Jan 16;4(2):143-147. doi: 10.1021/acsphyschemau.3c00068. eCollection 2024 Mar 27.
CO evolution is one of the urgent global issues; meanwhile, understanding of sorptive/dynamic behavior is crucial to create next-generation encapsulant materials with stable sorbent processes. Herein, we showcase molecular CO storage constructed by a [60]fullerenol nanopocket. The CO density reaches 2.401 g/cm within the nanopore, showing strong intramolecular interactions, which induce nanoconfinement effects such as forbidden translation, restricted rotation, and perturbed vibration of CO. We also disclosed an equation of state for a molecular CO gas, revealing a very low pressure of 3.14 rPa (1 rPa = 10 Pa) generated by the rotation/vibration at 300 K. Curiously enough, the CO capture enabled to modulate an external property of the encapulant material itself, i.e., association of the [60]fullerenol via intercage hydrogen-bonding.
一氧化碳(CO)共演化是全球紧迫问题之一;与此同时,了解吸附/动态行为对于制造具有稳定吸附过程的下一代密封材料至关重要。在此,我们展示了由[60]富勒醇纳米袋构建的分子CO储存。纳米孔内的CO密度达到2.401 g/cm,显示出强烈的分子内相互作用,这会引发诸如CO的禁止平移、受限旋转和振动扰动等纳米限域效应。我们还揭示了分子CO气体的状态方程,发现在300 K时由旋转/振动产生的极低压力为3.14 rPa(1 rPa = 10 Pa)。奇怪的是,CO捕获能够调节密封材料本身的外部性质,即[60]富勒醇通过笼间氢键的缔合。