Kavli Energy Nanosciences Institute at Berkeley , Berkeley , California 94720 , United States.
Corporate Strategic Research , ExxonMobil Research and Engineering Company , Annandale , New Jersey 08801 , United States.
J Am Chem Soc. 2019 Aug 21;141(33):13171-13186. doi: 10.1021/jacs.9b05567. Epub 2019 Aug 8.
Supported by increasingly available reserves, natural gas is achieving greater adoption as a cleaner-burning alternative to coal in the power sector. As a result, carbon capture and sequestration from natural gas-fired power plants is an attractive strategy to mitigate global anthropogenic CO emissions. However, the separation of CO from other components in the flue streams of gas-fired power plants is particularly challenging due to the low CO partial pressure (∼40 mbar), which necessitates that candidate separation materials bind CO strongly at low partial pressures (≤4 mbar) to capture ≥90% of the emitted CO. High partial pressures of O (120 mbar) and water (80 mbar) in these flue streams have also presented significant barriers to the deployment of new technologies for CO capture from gas-fired power plants. Here, we demonstrate that functionalization of the metal-organic framework Mg(dobpdc) (dobpdc = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) with the cyclic diamine 2-(aminomethyl)piperidine (2-ampd) produces an adsorbent that is capable of ≥90% CO capture from a humid natural gas flue emission stream, as confirmed by breakthrough measurements. This material captures CO by a cooperative mechanism that enables access to a large CO cycling capacity with a small temperature swing (2.4 mmol CO/g with Δ = 100 °C). Significantly, multicomponent adsorption experiments, infrared spectroscopy, magic angle spinning solid-state NMR spectroscopy, and van der Waals-corrected density functional theory studies suggest that water enhances CO capture in 2-ampd-Mg(dobpdc) through hydrogen-bonding interactions with the carbamate groups of the ammonium carbamate chains formed upon CO adsorption, thereby increasing the thermodynamic driving force for CO binding. In light of the exceptional thermal and oxidative stability of 2-ampd-Mg(dobpdc), its high CO adsorption capacity, and its high CO capture rate from a simulated natural gas flue emission stream, this material is one of the most promising adsorbents to date for this important separation.
在日益丰富的储备资源的支持下,天然气作为煤炭的一种更清洁的替代品,在电力领域的应用越来越广泛。因此,从天然气发电厂捕获和封存二氧化碳是一种减少人为 CO 排放的有吸引力的策略。然而,由于 CO 在烟道气中的分压较低(约 40 mbar),从燃气电厂烟道气中分离 CO 特别具有挑战性,这需要候选分离材料在低分压(≤4 mbar)下强烈结合 CO,以捕获≥90%的排放 CO。这些烟道气中 O(120 mbar)和水(80 mbar)的分压较高,也对从燃气电厂中捕获 CO 的新技术的部署构成了重大障碍。在这里,我们证明了将金属有机骨架 Mg(dobpdc)(dobpdc = 4,4'-二氧代联苯-3,3'-二羧酸)用环状二胺 2-(氨甲基)哌啶(2-ampd)功能化,产生了一种吸附剂,该吸附剂能够从潮湿的天然气烟道气排放中捕获≥90%的 CO,这一点通过穿透测量得到了证实。这种材料通过一种协同机制捕获 CO,该机制可以在较小的温度变化范围内实现大的 CO 循环容量(2.4 mmol CO/g,Δ = 100°C)。重要的是,多组分吸附实验、红外光谱、魔角旋转固态 NMR 光谱和范德华修正密度泛函理论研究表明,水通过与 CO 吸附后形成的氨基甲酸铵链中的氨基甲酸酯基团形成氢键相互作用,增强了 2-ampd-Mg(dobpdc)中 CO 的捕获,从而增加了 CO 结合的热力学驱动力。鉴于 2-ampd-Mg(dobpdc)的出色热稳定性和氧化稳定性、其高 CO 吸附容量以及从模拟天然气烟道气排放中高的 CO 捕获率,该材料是迄今为止用于这种重要分离的最有前途的吸附剂之一。