Guo Wenyi, Xu Liang, Su Yiwen, Tian Zhengnan, Qiao Changpeng, Zou Yuhan, Chen Ziang, Yang Xianzhong, Cheng Tao, Sun Jingyu
College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, People's Republic of China.
Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, People's Republic of China.
ACS Nano. 2024 Apr 16;18(15):10642-10652. doi: 10.1021/acsnano.4c02740. Epub 2024 Apr 1.
Considerable attention has been by far paid to stabilizing metallic Zn anodes, where side reactions and dendrite formation still remain detrimental to their practical advancement. Electrolyte modification or protected layer design is widely reported; nonetheless, an effective maneuver to synergize both tactics has been rarely explored. Herein, we propose a localized electrolyte optimization via the introduction of a dual-functional biomass modificator over the Zn anode. Instrumental characterization in conjunction with molecular dynamics simulation indicates local solvation structure transformation owing to the limitation of bound water with intermolecular hydrogen bonds, effectively suppressing hydrogen evolutions. Meanwhile, the optimized nucleation throughout the protein membrane allows uniform Zn deposition. Accordingly, the symmetric cell exhibits an elongated lifespan of 3280 h at 1.0 mA cm/1.0 mAh cm, while the capacity retention of the full cell sustains 91.1% after 2000 cycles at 5.0 A g. The localized electrolyte tailoring via protein membrane introduction might offer insights into operational metal anode protection.
到目前为止,人们对稳定金属锌阳极给予了相当多的关注,然而,副反应和枝晶形成仍然不利于它们的实际应用。电解质改性或保护层设计的报道很多;尽管如此,很少有人探索将这两种策略协同作用的有效方法。在此,我们提出通过在锌阳极上引入双功能生物质改性剂来实现局部电解质优化。结合分子动力学模拟的仪器表征表明,由于分子间氢键结合水的限制,局部溶剂化结构发生转变,有效地抑制了析氢反应。同时,优化后的蛋白质膜成核过程使锌能够均匀沉积。因此,对称电池在1.0 mA cm/1.0 mAh cm的条件下表现出3280 h的延长寿命,而全电池在5.0 A g的条件下经过2000次循环后容量保持率维持在91.1%。通过引入蛋白质膜进行局部电解质定制可能为金属阳极的运行保护提供思路。