Suppr超能文献

预测抗生素耐药性和评估抗生素的风险负担:热带水库中的整体建模框架。

Predicting Antibiotic Resistance and Assessing the Risk Burden from Antibiotics: A Holistic Modeling Framework in a Tropical Reservoir.

机构信息

Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore.

NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore.

出版信息

Environ Sci Technol. 2024 Apr 16;58(15):6781-6792. doi: 10.1021/acs.est.3c10467. Epub 2024 Apr 1.

Abstract

Predicting the hotspots of antimicrobial resistance (AMR) in aquatics is crucial for managing associated risks. We developed an integrated modeling framework toward predicting the spatiotemporal abundance of antibiotics, indicator bacteria, and their corresponding antibiotic-resistant bacteria (ARB), as well as assessing the potential AMR risks to the aquatic ecosystem in a tropical reservoir. Our focus was on two antibiotics, sulfamethoxazole (SMX) and trimethoprim (TMP), and on () and its variant resistant to sulfamethoxazole-trimethoprim (EC_SXT). We validated the predictive model using withheld data, with all Nash-Sutcliffe efficiency (NSE) values above 0.79, absolute relative difference (ARD) less than 25%, and coefficient of determination () greater than 0.800 for the modeled targets. Predictions indicated concentrations of 1-15 ng/L for SMX, 0.5-5 ng/L for TMP, and 0 to 5 (log MPN/100 mL) for and -1.1 to 3.5 (log CFU/100 mL) for EC_SXT. Risk assessment suggested that the predicted TMP could pose a higher risk of AMR development than SMX, but SMX could possess a higher ecological risk. The study lays down a hybrid modeling framework for integrating a statistic model with a process-based model to predict AMR in a holistic manner, thus facilitating the development of a better risk management framework.

摘要

预测水产养殖中抗生素耐药性(AMR)的热点对于管理相关风险至关重要。我们开发了一个综合建模框架,用于预测抗生素、指示菌及其相应的抗生素耐药菌(ARB)的时空丰度,并评估热带水库中抗生素耐药性对水生态系统的潜在风险。我们的重点是两种抗生素,磺胺甲恶唑(SMX)和甲氧苄啶(TMP),以及磺胺甲恶唑-甲氧苄啶(EC_SXT)耐药变体()。我们使用保留数据验证了预测模型,所有模型目标的纳什-苏特克里夫效率(NSE)值均高于 0.79,绝对相对差异(ARD)小于 25%,决定系数()大于 0.800。预测结果表明,SMX 的浓度为 1-15ng/L,TMP 的浓度为 0.5-5ng/L,和 -1.1 到 3.5(log CFU/100mL)。风险评估表明,预测的 TMP 可能比 SMX 更能引发抗生素耐药性的发展,但 SMX 可能具有更高的生态风险。本研究为整合统计模型和基于过程的模型以全面预测抗生素耐药性奠定了混合建模框架,从而有助于制定更好的风险管理框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b34/11025116/2099687262aa/es3c10467_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验