Suppr超能文献

利用工程化微生物群落进行异生素生物修复:整合多组学和人工智能用于下一代废水处理。

Harnessing Engineered Microbial Consortia for Xenobiotic Bioremediation: Integrating Multi-Omics and AI for Next-Generation Wastewater Treatment.

作者信息

Renganathan Prabhaharan, Gaysina Lira A, García Gutiérrez Cipriano, Rueda Puente Edgar Omar, Sainz-Hernández Juan Carlos

机构信息

Department of Bioecology and Biological Education, M. Akmullah Bashkir State Pedagogical University, 450000 Ufa, Russia.

All-Russian Research Institute of Phytopathology, 143050 Bolshye Vyazemy, Russia.

出版信息

J Xenobiot. 2025 Aug 19;15(4):133. doi: 10.3390/jox15040133.

Abstract

The global increase in municipal and industrial wastewater generation has intensified the need for ecologically resilient and technologically advanced treatment systems. Although traditional biological treatment technologies are effective for organic load reduction, they often fail to remove recalcitrant xenobiotics such as pharmaceuticals, synthetic dyes, endocrine disruptors (EDCs), and microplastics (MPs). Engineered microbial consortia offer a promising and sustainable alternative owing to their metabolic flexibility, ecological resilience, and capacity for syntrophic degradation of complex pollutants. This review critically examines emerging strategies for enhancing microbial bioremediation in wastewater treatment systems (WWTS), focusing on co-digestion, biofilm engineering, targeted bioaugmentation, and incorporation of conductive materials to stimulate direct interspecies electron transfer (DIET). This review highlights how multi-omics platforms, including metagenomics, transcriptomics, and metabolomics, enable high-resolution community profiling and pathway reconstructions. The integration of artificial intelligence (AI) and machine learning (ML) algorithms into bioprocess diagnostics facilitates real-time system optimization, predictive modeling of antibiotic resistance gene (ARG) dynamics, and intelligent bioreactor control. Persistent challenges, such as microbial instability, ARG dissemination, reactor fouling, and the absence of region-specific microbial reference databases, are critically analyzed. This review concludes with a translational pathway for the development of next-generation WWTS that integrate synthetic microbial consortia, AI-mediated biosensors, and modular bioreactors within the One Health and Circular Economy framework.

摘要

全球城市和工业废水产生量的增加,强化了对具有生态恢复力和技术先进的处理系统的需求。尽管传统生物处理技术在降低有机负荷方面有效,但它们往往无法去除难降解的外源化合物,如药物、合成染料、内分泌干扰物(EDCs)和微塑料(MPs)。工程化微生物群落因其代谢灵活性、生态恢复力以及对复杂污染物进行共生降解的能力,提供了一种有前景且可持续的替代方案。本综述批判性地审视了在废水处理系统(WWTS)中增强微生物生物修复的新兴策略,重点关注共消化、生物膜工程、靶向生物强化以及引入导电材料以刺激种间直接电子转移(DIET)。本综述强调了多组学平台,包括宏基因组学、转录组学和代谢组学,如何实现高分辨率群落剖析和代谢途径重建。将人工智能(AI)和机器学习(ML)算法整合到生物过程诊断中,有助于实时系统优化、抗生素抗性基因(ARG)动态的预测建模以及智能生物反应器控制。对诸如微生物不稳定性、ARG传播、反应器结垢以及缺乏区域特异性微生物参考数据库等持续存在的挑战进行了批判性分析。本综述最后提出了一条转化途径,用于开发下一代WWTS,即在“同一个健康”和循环经济框架内整合合成微生物群落、AI介导的生物传感器和模块化生物反应器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20f3/12387628/099594da230b/jox-15-00133-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验