Suppr超能文献

使用静息态脑电图 (EEG) 中的 alpha 波段活动结合 MATRICS 共识认知电池 (MCCB) 对重度抑郁症 (MDD) 进行特征描述。

Characterizing Major Depressive Disorder (MDD) using alpha-band activity in resting-state electroencephalogram (EEG) combined with MATRICS Consensus Cognitive Battery (MCCB).

机构信息

The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100191 Beijing, China.

Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, 1050 Brussels, Belgium.

出版信息

J Affect Disord. 2024 Jun 15;355:254-264. doi: 10.1016/j.jad.2024.03.145. Epub 2024 Mar 30.

Abstract

BACKGROUND

The diagnosis of major depressive disorder (MDD) is commonly based on the subjective evaluation by experienced psychiatrists using clinical scales. Hence, it is particularly important to find more objective biomarkers to aid in diagnosis and further treatment. Alpha-band activity (7-13 Hz) is the most prominent component in resting electroencephalogram (EEG), which is also thought to be a potential biomarker. Recent studies have shown the existence of multiple sub-oscillations within the alpha band, with distinct neural underpinnings. However, the specific contribution of these alpha sub-oscillations to the diagnosis and treatment of MDD remains unclear.

METHODS

In this study, we recorded the resting-state EEG from MDD and HC populations in both open and closed-eye state conditions. We also assessed cognitive processing using the MATRICS Consensus Cognitive Battery (MCCB).

RESULTS

We found that the MDD group showed significantly higher power in the high alpha range (10.5-11.5 Hz) and lower power in the low alpha range (7-8.5 Hz) compared to the HC group. Notably, high alpha power in the MDD group is negatively correlated with working memory performance in MCCB, whereas no such correlation was found in the HC group. Furthermore, using five established classification algorithms, we discovered that combining alpha oscillations with MCCB scores as features yielded the highest classification accuracy compared to using EEG or MCCB scores alone.

CONCLUSIONS

Our results demonstrate the potential of sub-oscillations within the alpha frequency band as a potential distinct biomarker. When combined with psychological scales, they may provide guidance relevant for the diagnosis and treatment of MDD.

摘要

背景

重度抑郁症(MDD)的诊断通常基于经验丰富的精神科医生使用临床量表进行的主观评估。因此,找到更客观的生物标志物来辅助诊断和进一步治疗尤为重要。静息脑电图(EEG)中的α波段活动(7-13 Hz)是最突出的成分,也被认为是一种潜在的生物标志物。最近的研究表明,α频带内存在多个亚震荡,具有不同的神经基础。然而,这些α亚震荡对 MDD 的诊断和治疗的具体贡献仍不清楚。

方法

在这项研究中,我们记录了 MDD 和 HC 人群在睁眼和闭眼状态下的静息状态 EEG,并使用 MATRICS 共识认知电池(MCCB)评估认知处理。

结果

我们发现 MDD 组在高α频带(10.5-11.5 Hz)的功率明显高于 HC 组,在低α频带(7-8.5 Hz)的功率明显低于 HC 组。值得注意的是,MDD 组的高α功率与 MCCB 中的工作记忆表现呈负相关,而 HC 组则没有这种相关性。此外,使用五种已建立的分类算法,我们发现将α振荡与 MCCB 分数相结合作为特征的分类准确性高于单独使用 EEG 或 MCCB 分数。

结论

我们的研究结果表明,α频带内的亚震荡可能是一种潜在的独特生物标志物。当与心理量表结合使用时,它们可能为 MDD 的诊断和治疗提供相关指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验