Institute of Clinical Psychology and Psychotherapy, Faculty of Psychology, Technische Universität Dresden, Dresden 01187, Germany
Institute of Clinical Psychology and Psychotherapy, Faculty of Psychology, Technische Universität Dresden, Dresden 01187, Germany.
J Neurosci. 2024 May 22;44(21):e1337232024. doi: 10.1523/JNEUROSCI.1337-23.2024.
It remains a pressing concern to understand how neural computations relate to risky decisions. However, most observations of brain-behavior relationships in the risk-taking domain lack a rigorous computational basis or fail to emulate of the dynamic, sequential nature of real-life risky decision-making. Recent advances emphasize the role of neural prediction error (PE) signals. We modeled, according to prospect theory, the choices of = 43 human participants (33 females, 10 males) performing an EEG version of the hot Columbia Card Task, featuring rounds of sequential decisions between stopping (safe option) and continuing with increasing odds of a high loss (risky option). Single-trial regression EEG analyses yielded a subjective value signal at centroparietal (300-700 ms) and frontocentral (>800 ms) electrodes and in the delta band, as well as PE signals tied to the feedback-related negativity, P3a, and P3b, and in the theta band. Higher risk preference (total number of risky choices) was linked to attenuated subjective value signals but increased PE signals. Higher P3-like activity associated with the most positive PE in each round predicted stopping in the present round but not risk-taking in the subsequent round. Our findings indicate that decreased representation of decision values and increased sensitivity to winning despite low odds (positive PE) facilitate risky choices at the subject level. Strong neural responses when gains are least expected (the most positive PE on each round) adaptively contribute to safer choices at the trial-by-trial level but do not affect risky choice at the round-by-round level.
理解神经计算如何与风险决策相关仍然是一个紧迫的问题。然而,风险决策领域中大多数大脑-行为关系的观察缺乏严格的计算基础,或者未能模拟现实生活中风险决策的动态、顺序性质。最近的进展强调了神经预测误差 (PE) 信号的作用。我们根据前景理论,对 = 43 名人类参与者(33 名女性,10 名男性)的选择进行建模,他们执行了 EEG 版的热门哥伦比亚卡任务,该任务具有在停止(安全选项)和继续之间进行的连续决策回合,增加了高损失的可能性(风险选项)。单试回归 EEG 分析在中央顶叶(300-700ms)和额中央(>800ms)电极以及 delta 波段产生了一个主观价值信号,以及与反馈相关的负性、P3a 和 P3b 以及 theta 波段相关的 PE 信号。较高的风险偏好(风险选择的总数)与减弱的主观价值信号相关,但与增加的 PE 信号相关。与每一轮中最正的 PE 相关的更高的 P3 样活动预测了当前轮的停止,但不能预测下一轮的风险承担。我们的发现表明,决策值的代表性降低和对低概率获胜的敏感性增加(正的 PE)促进了个体层面的风险选择。当收益最不期望时(每轮中最正的 PE)产生的强烈神经反应自适应地有助于更安全的逐试选择,但不会影响逐轮的风险选择。