Suppr超能文献

嗅觉分类受评估感知预测的跨模态皮质网络塑造。

Olfactory Categorization Is Shaped by a Transmodal Cortical Network for Evaluating Perceptual Predictions.

机构信息

Gösta Ekman Laboratory, Department of Psychology, Stockholm University, Stockholm 114 19, Sweden

Gösta Ekman Laboratory, Department of Psychology, Stockholm University, Stockholm 114 19, Sweden.

出版信息

J Neurosci. 2024 May 29;44(22):e1232232024. doi: 10.1523/JNEUROSCI.1232-23.2024.

Abstract

Creating and evaluating predictions are considered important features in sensory perception. Little is known about processing differences between the senses and their cortical substrates. Here, we tested the hypothesis that olfaction, the sense of smell, would be highly dependent on (nonolfactory) object-predictive cues and involve distinct cortical processing features. We developed a novel paradigm to compare prediction error processing across senses. Participants listened to spoken word cues (e.g., "lilac") and determined whether target stimuli (odors or pictures) matched the word cue or not. In two behavioral experiments (total  = 113; 72 female), the disparity between congruent and incongruent response times was exaggerated for olfactory relative to visual targets, indicating a greater dependency on predictive verbal cues to process olfactory targets. A preregistered fMRI study ( = 30; 19 female) revealed the anterior cingulate cortex (a region central for error detection) being more activated by incongruent olfactory targets, indicating a role for olfactory predictive error processing. Additionally, both the primary olfactory and visual cortices were significantly activated for incongruent olfactory targets, suggesting olfactory prediction errors are dependent on cross-sensory processing resources, whereas visual prediction errors are not. We propose that olfaction is characterized by a strong dependency on predictive (nonolfactory) cues and that odors are evaluated in the context of such predictions by a designated transmodal cortical network. Our results indicate differences in how predictive cues are used by different senses in rapid decision-making.

摘要

创建和评估预测被认为是感觉感知中的重要特征。对于不同感觉及其皮质基质之间的处理差异知之甚少。在这里,我们测试了这样一个假设,即嗅觉,即嗅觉,将高度依赖(非嗅觉)物体预测线索,并涉及独特的皮质处理特征。我们开发了一种新的范式来比较跨感觉的预测误差处理。参与者听取了口语提示(例如,“丁香”),并确定目标刺激(气味或图片)是否与单词提示匹配。在两项行为实验(共 113 名;72 名女性)中,嗅觉目标的一致和不一致反应时间之间的差异被夸大,表明对预测性言语提示的依赖性更强,以处理嗅觉目标。一项预先注册的 fMRI 研究(30 名;19 名女性)显示,前扣带皮层(一个中央用于错误检测的区域)对不一致的嗅觉目标的激活程度更高,表明嗅觉预测错误处理的作用。此外,初级嗅觉和视觉皮层都对不一致的嗅觉目标有明显的激活,这表明嗅觉预测错误依赖于跨感觉处理资源,而视觉预测错误则不然。我们提出嗅觉的特征是强烈依赖于预测(非嗅觉)线索,并且在这种预测的背景下,气味由指定的跨模态皮质网络进行评估。我们的结果表明,不同感觉在快速决策中如何使用预测线索存在差异。

相似文献

1
Olfactory Categorization Is Shaped by a Transmodal Cortical Network for Evaluating Perceptual Predictions.
J Neurosci. 2024 May 29;44(22):e1232232024. doi: 10.1523/JNEUROSCI.1232-23.2024.
2
Olfactory Influences on Visual Categorization: Behavioral and ERP Evidence.
Cereb Cortex. 2020 Jun 1;30(7):4220-4237. doi: 10.1093/cercor/bhaa050.
3
The nose smells what the eye sees: crossmodal visual facilitation of human olfactory perception.
Neuron. 2003 Jul 17;39(2):375-86. doi: 10.1016/s0896-6273(03)00392-1.
4
Behavioral separation of liking and wanting in response to olfactory and visual food cues.
Appetite. 2025 Jan 1;204:107717. doi: 10.1016/j.appet.2024.107717. Epub 2024 Oct 17.
5
De Novo Emergence of Odor Category Representations in the Human Brain.
J Neurosci. 2016 Jan 13;36(2):468-78. doi: 10.1523/JNEUROSCI.3248-15.2016.
6
7
"Fast" versus "slow" word integration of visual and olfactory objects: EEG biomarkers of decision speed variability.
Behav Neurosci. 2018 Dec;132(6):587-594. doi: 10.1037/bne0000266. Epub 2018 Oct 8.
8
The functional neuroanatomy of odor evoked autobiographical memories cued by odors and words.
Neuropsychologia. 2013 Jan;51(1):123-31. doi: 10.1016/j.neuropsychologia.2012.10.023. Epub 2012 Nov 9.
10
Individual odor hedonic perception is coded in temporal joint network activity.
Neuroimage. 2021 Apr 1;229:117782. doi: 10.1016/j.neuroimage.2021.117782. Epub 2021 Jan 23.

引用本文的文献

1
The mysterious sense of smell: evolution, historical perspectives, and neurological disorders.
Front Hum Neurosci. 2025 Jun 13;19:1588935. doi: 10.3389/fnhum.2025.1588935. eCollection 2025.
2
Predictive coding in the human olfactory system.
Trends Cogn Sci. 2025 May 8. doi: 10.1016/j.tics.2025.04.005.
3
Stepwise pathways from the olfactory cortex to central hub regions in the human brain.
Hum Brain Mapp. 2024 Dec 15;45(18):e26760. doi: 10.1002/hbm.26760.

本文引用的文献

1
Assessment of direct knowledge of the human olfactory system.
Exp Neurol. 2020 Jul;329:113304. doi: 10.1016/j.expneurol.2020.113304. Epub 2020 Apr 9.
2
Olfactory Influences on Visual Categorization: Behavioral and ERP Evidence.
Cereb Cortex. 2020 Jun 1;30(7):4220-4237. doi: 10.1093/cercor/bhaa050.
3
Characterizing functional pathways of the human olfactory system.
Elife. 2019 Jul 24;8:e47177. doi: 10.7554/eLife.47177.
4
Human olfactory-auditory integration requires phase synchrony between sensory cortices.
Nat Commun. 2019 Mar 11;10(1):1168. doi: 10.1038/s41467-019-09091-3.
5
PsychoPy2: Experiments in behavior made easy.
Behav Res Methods. 2019 Feb;51(1):195-203. doi: 10.3758/s13428-018-01193-y.
6
Differential coding of perception in the world's languages.
Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):11369-11376. doi: 10.1073/pnas.1720419115.
7
"Fast" versus "slow" word integration of visual and olfactory objects: EEG biomarkers of decision speed variability.
Behav Neurosci. 2018 Dec;132(6):587-594. doi: 10.1037/bne0000266. Epub 2018 Oct 8.
8
The Role of the Anterior Cingulate Cortex in Prediction Error and Signaling Surprise.
Top Cogn Sci. 2019 Jan;11(1):119-135. doi: 10.1111/tops.12307. Epub 2017 Nov 13.
9
Poor human olfaction is a 19th-century myth.
Science. 2017 May 12;356(6338). doi: 10.1126/science.aam7263.
10
The muted sense: neurocognitive limitations of olfactory language.
Trends Cogn Sci. 2015 Jun;19(6):314-21. doi: 10.1016/j.tics.2015.04.007. Epub 2015 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验